首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2003年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
M V Norgard  K Keem  J J Monahan 《Gene》1978,3(4):279-292
The susceptibility of E. coli strain chi1776 to transformation by pBR322 plasmid DNA was examined and optimized. Maximum transformation to tetracycline (Tc) resistance was achieved when cells were harvested from L broth at 5.0--6.0 . 10(7) cfu/ml, followed by washing twice in cold 0.1 M NaCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6. Cells grown in the presence of D-cycloserine (Cyc) rather than nalidixic acid (Nx) transformed markedly better. The presence of 5 mM Mg2+ ions in washing and CaCl2 solutions stimulated transformation about 2-fold. Optimal conditions for transformation included a pH range of 7.25-7.75 and a cell-to-DNA ratio of about 1.6 . 10(8) cfu/ng plasmid DNA. The frequency of transformation was highest when cells were exposed to 100 mM CaCl2 in 250 mM KCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6, before mixing with DNA. A 60 min incubation period for cell + DNA mixtures held on ice produced the maximum number of Tcr transformants. In our hands, heat shocks at 37 degrees C or 42 degrees C for various times all decreased transformation to about one-half of optimal levels. Furthermore, the recovery of transformants was best when cell + DNA mixtures were plated on precooled (4 degrees C) Tc agar plates. The efficiency of plating was optimum when only 5 microliter of cell + DNA mixture was spread per plate, suggesting that non-viable background chi1776 cells on selective medium inhibited the recovery of transformants. It was also found that the presence of linear DNA molecules in cell + DNA mixtures markedly inhibited the transformation of chi1776 by pBR322 plasmid DNA. On the basis of these findings, a new procedure for the plasmid-specific transformation of E. coli chi1776 by pBR322 plasmid DNA is proposed. The use of this technique has allowed us to attain transformation frequencies in excess of 10(7) transformants/microgram pBR322 plasmid DNA.  相似文献   
2.
Human fibroblast cell lines were pulse-treated for 1 h with either methylnitrosourea (MNU) or ethylnitrosourea (ENU) at various time intervals before harvesting for chromosome analysis. Cells treated with 1 X 10(-3) M, 5 X 10(-4) M, and 1 X 10(-4) M final concentrations of MNU and ENU during the G2 or M phases of the cell cycle showed a significant increase in chromatid-type abnormalities over controls. Cells exposed to MNU or ENU 23 h before harvest showed some chromosome-type abnormalities, reflecting probable damage induced during the G1 phase of the cell cycle or derived from chromatid damage induced during the previous cell cycle. The mitotic indices and incidences of abnormalities suggested a dose response effect when cells were treated with the two higher concentrations and the three concentrations, respectively, of MNU or ENU. Chromatid abnormalities were observed in MUN and ENU-treated cells from each of four cell lines. From this investigation, it was concluded that MNU and ENU treatment of human diploid cell lines in vitro induced both chromatid and chromosome aberrations. MNU and ENU, both of which had previously been shown to be mutagenic in experimental animals, are, therefore, also considered to be mutagenic at the chromosome level in human fibroblasts grown and treated in cell culture.  相似文献   
3.
Cyclization has been recognized as a valuable technique for increasing the efficacy of small molecule and peptide therapeutics. Here we report the application of a hydrocarbon staple to a rationally-designed cationic antimicrobial peptide (CAP) that acquires increased membrane targeting and interaction vs. its linear counterpart. The previously-described CAP, 6K-F17 (KKKKKK-AAFAAWAAFAA-NH2) was used as the backbone for incorporation of an i to i?+?4 helical hydrocarbon staple through olefin ring closing metathesis. Stapled versions of 6K-F17 showed an increase in non-selective membrane interaction, where the staple itself enhances the degree of membrane interaction and rate of cell death while maintaining high potency against bacterial membranes. However, the higher averaged hydrophobicity imparted by the staple also significantly increases toxicity to mammalian cells. This deleterious effect is countered through stepwise reduction of the stapled 6K-F17’s backbone hydrophobicity through polar amino acid substitutions. Circular dichroism assessment of secondary structure in various bacterial membrane mimetics reveals that a helical structure may improve – but is not an absolute requirement for – antimicrobial activity of 6K-F17. Further, phosphorus-31 static solid state NMR spectra revealed that both non-toxic stapled and linear peptides bind bacterial membranes in a similar manner that does not involve a detergent-like mechanism of lipid removal. The overall results suggest that the technique of hydrocarbon stapling can be readily applied to membrane-interactive CAPs to modulate how they interact and target biological membranes.  相似文献   
4.
5.
Exposure of microbial cells to sub-lethal stresses is known to increase cell robustness. In this work, a two-compartment bioreactor in which microbial cells are stochastically exposed to sub-lethal temperature stresses has been used in order to investigate the response of the stress sensitive Bifidobacterium bifidum THT 0101 to downstream processing operations. A stochastic model validated by residence time distribution experiments has shown that in the heat-shock configuration, a two-compartment bioreactor (TCB) allows the exposure of microbial cells to sub-lethal temperature of 42 °C for a duration comprised between 100 and 300 s. This exposure resulted in a significant increase of cell resistance to freeze–drying by comparison with cells cultivated in conventional bioreactors or in the TCB in the cold shock mode (CS-TCB). The mechanism behind this robustness seems to be related with the coating of microbial cells with exopolysaccharide (EPS), as assessed by the change of the zeta potential and the presence of higher EPS concentration after heat shock. Conditioning of Bifidobacteria on the basis of the heat shock technique is interesting from the practical and economical point of view since this strategy can be directly implemented in the bioreactor during stationary phase preceding cell recovery and freeze–drying.  相似文献   
6.
Klebsiella pneumoniae is an opportunistic pathogen, which causes a wide range of nosocomial infections. Recently, antibiotic resistance makes K. pneumoniae infection difficult to deal with. Investigation on virulence determinants of K. pneumoniae can provide more information about pathogenesis and unveil new targets for treatment or vaccine development. In this study, SitA, a Fur-regulated divalent cation transporter, was found significantly increased when K. pneumoniae was cultured in a nutrient-limited condition. A sitA-deletion strain (ΔsitA) was created to characterize the importance of SitA in virulence. ΔsitA showed higher sensitivity toward hydroperoxide than its parental strain. In a mouse intraperitoneal infection model, the survival rate of mice infected with ΔsitA strain increased greatly when compared with that of mice infected with the parental strain, suggesting that sitA deletion attenuates the bacterial virulence in vivo. To test whether ΔsitA strain is a potential vaccine candidate, mice were immunized with inactivated bacteria and then challenged with the wild-type strain. The results showed that using ΔsitA mutant protected mice better than using the wild-type strain or the capsule-negative congenic bacteria. In summary, SitA was found being important for the growth of K. pneumoniae in vivo and deleting sitA might be a potential approach to generate vaccines against K. pneumoniae.  相似文献   
7.
We have studied the effects of 5-bromodeoxyuridine (BrdUrd) at two genetic loci in diploid human lymphoblast cells. In thymidine kinase heterozygotes (tk +/-), a 2-h dose of BrdUrd induced a transient, non-heritable resistance to the thymidine analogue, trifluorothymidine (F3TdR). We have called this phenomenon pseudomutation and have shown that affected cells acquire the ability to survive in the presence of F3TdR and then, after degradation of F3TdR in the medium, return to an apparently normal wild-type state. Our data suggest that BrdUrd incorporation into DNA as a thymidine analogue is responsible for the effect, which we interpret as a temporary loss of thymidine kinase activity. This effect is not seen in tk +/+ homozygotes. In contrast, at the hypoxanthine-guanine phosphoribosyl transferase locus in tk +/- heterozygotes, BrdUrd did not induce a permanent, heritable resistance to 6-thioguanine (gene locus mutation). We detected such mutations only in the tk +/+ homozygote and only at external BrdUrd concentrations considerably higher than those which saturate the uptake of BrdUrd into DNA as a thymidine analogue. We postulate that the reduced TK enzyme levels (30%) in the heterozygote prevent the build-up of a sufficiently high intracellular BrdUrd triphosphate pool to promote the misincorporations as deoxycytidine triphosphate which may be responsible for gene locus mutation.  相似文献   
8.
The investigation evaluated the role of plant growth promoting rhizobacteria (PGPR) and Ag-nano particle on the growth and metabolism of maize irrigated with municipal wastewater (MW). Three PGPR isolated from MW were identified on the basis of 16S-rRNA gene sequence analyses as Pseudomonas sp., Pseudomonas fluorescence, and Bacillus cereus. The municipal waste water was used to irrigate the maize seeds inoculated with 3 isolated PGPR. The isolated PGPR had catalase and oxidase enzymes, solubilize insoluble bound phosphate and exhibit antifungal and antibacterial activities. The colony forming unit (cfu) of the PGPR was inhibited by Ag-nano particle, but was stimulated by the municipal wastewater. The Ag-nano particles augmented the PGPR induced increase in root area and root length. The root-shoot ratio was also changed with the Ag-nano particles. The plants irrigated with municipal wastewater had higher activities of peroxidase and catalase which were further augmented by Ag-nano particle. The Ag- nano particle application modulated level of ABA (34%), IAA (55%), and GA (82%), increased proline production (70%) and encountered oxidative stress and augmented the bioremediation potential of PGPR for Pb, Cd, and Ni. Municipal wastewater needs to be treated with PGPR and Ag nano particle prior to be used for irrigation. This aims for the better growth of the plant and enhanced bioremediation of toxic heavy metals.  相似文献   
9.
Heterophils mediate acute protection against Salmonella in young poultry. We evaluated susceptibility of genetically distinct lines of broilers to systemic Salmonella enteritidis (SE) infections. SE was administered into the abdomen of day-old chickens (parental lines [A and B]; F1 reciprocal crosses [C and D]) to assess modulation of leukocytes and survivability of chickens. Line A was more resistant to SE than line B; likewise cross D was more resistant than cross C. Significantly more heterophils migrated to the abdominal cavity post-infection in the resistant lines. These data indicate that increased heterophil influx to the infection site contributes to increased resistance against systemic SE infections in neonatal chickens.  相似文献   
10.
In this study, the association between MH-DAB gene polymorphism and disease resistance was evaluated by challenging grass carp (Ctenopharyngodon idellus) with Flavobacterium columnare. Eight genotypes and six alleles were found, and named by common nomenclature. The genotypes AA, BB, EE, and DE, and the alleles Ctid-DAB1*0101, Ctid-DAB1*0201 and Ctid-DAB1*0401 were more preponderant in fish. The genotype BB was associated with higher resistance to F. columnare, as well as two alleles Ctid-DAB*0101 and Ctid-DAB*0201. Allele Ctid-DAB*0102 has decreased resistance to F. columnare. The expression of MH-DAB gene was decreased in the liver, kidney, and intestine but not in the spleen, gill, and skin at 2 days post infection (dpi), versus to that in the control group. MH-DAB gene expression was up-regulated in most tissues but remained at normal levels in the intestine at 15 days post infection. Our data suggested that MH-DAB polymorphism can be used as a potential genetic marker for disease resistance breeding of grass carp in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号