首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2021年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Arylalkylamine N-acetyltransferase (AANAT) plays a crucial role in synchronizing internal biological functions to circadian and circannual changes. Generally speaking, only one copy of AANAT gene has been found in mammals, however, three independent duplications of this gene were detected in several cetartiodactyl lineages (i.e., Suidae, Hippopotamidae, and Pecora), which originated in the middle Eocene, a geological period characterized with the increased climate seasonality. Lineage-specific expansions of AANAT and the associated functional enhancement in these lineages strongly suggest an improvement in regulating photoperiodic response to adapt to seasonal climate changes. In contrast, independent inactivating mutations or deletions of the AANAT locus were identified in the four pineal-deficient clades (cetaceans, sirenians, xenarthrans, and pangolins). Loss of AANAT function in cetaceans and sirenians could disrupt the sleep-promoting effects of pineal melatonin, which might contribute to increasing wakefulness, adapting these clades to underwater sleep. The absence of AANAT and pineal glands in xenarthrans and pangolins may be associated with their body temperature maintenance. The present work demonstrates a far more complex and intriguing evolutionary pattern and functional diversity of mammalian AANAT genes than previously thought and provides further evidence for understanding AANAT evolution as driven by rhythmic adaptations in mammals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号