首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   8篇
  国内免费   2篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   1篇
  2014年   3篇
  2013年   9篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   8篇
  2005年   2篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
排序方式: 共有95条查询结果,搜索用时 31 毫秒
1.
Magnetite, the only known biogenic material with ferromagnetic properties, has been identified as a biochemical precipitate in three of the five kingdoms of living organisms, with a fossil record that now extends back nearly 2 billion years. In the magnetotactic bacteria, protoctists, and fish, single-domain crystals of magnetite are arranged in membrane-bound linear structures called magnetosomes, which function as biological bar magnets. Magnetosomes in all three of these groups bear an overall structural similarity to each other, which includes alignment of the individual crystallographic [111] directions parallel to the long axis. Although the magnetosomes represent only a small volume fraction in higher organisms, enough of these highly energetic structures are present to provide sensitivity to extremely small fluctuations and gradients in the background geomagnetic field. Previous experiments with elasmobranch fish are reexamined to test the hypothesis that gradients played a role in their successful geomagnetic conditioning, and a variety of four-turn coil designs are considered that could be used to test the various hypotheses proposed for them.  相似文献   
2.
Propulsive movements of the caudal oscillating flukes produce large forces that could induce equally large recoil forces at the cranial end of the animal, and, thus, affect stability. To examine these vertical oscillations, video analysis was used to measure the motions of the rostrum, pectoral flipper, caudal peduncle, and fluke tip for seven odontocete cetaceans: Delphinapterus leucas, Globicephala melaena, Lagenorhynchus obliquidens, Orcinus orca, Pseudorca crassidens, Stenella plagiodon , and Tursiops truncatus. Animals swam over a range of speeds of 1.4–7.30 m/sec. For each species, oscillatory frequency of the fluke tip increased linearly with swimming speed. Peak-to-peak amplitude at each body position remained constant with respect to swimming speed for all species. Mean peak-to-peak amplitude ranged from 0.02 to 0.06 body length at the rostrum and from 0.17 to 0.25 body length at the fluke tip. The phase relationships between the various body components remain constant with respect to swimming speed. Oscillations of the rostrum were nearly in phase with the fluke tip with phase differences out of—9.4°-33.0° of a cycle period of 360°. Pectoral flipper oscillations trailed fluke oscillations by 60.9°-123.4°. The lower range in amplitude at the rostrum compared to the fluke tip reflects increased resistance to vertical oscillation at the cranial end, which enhances the animal's stability. This resistance is likely due to both active and passive increased body stiffness, resistance on the flippers, phased movements of body components, and use of a lift-based propulsion. Collectively, these mechanisms stabilize the body of cetaceans during active swimming, which can reduce locomotor energy expenditure and reduce excessive motions of the head affecting sensory capabilities.  相似文献   
3.
In his Commentary (Manger PR. 2009. Subglacial cetaceans and other mathematical mysteries: a Commentary on “A quantitative test of the thermogenesis hypothesis of cetacean brain evolution, using phylogenetic comparative methods” by C. Maximino. Mar Fresh Behav Physiol. 42: 359–362) on my paper (Maximino C. 2009. A quantitative test of the thermogenesis hypothesis of cetacean brain evolution, using phylogenetic comparative methods. Mar Freshwater Behav Physiol. 42:1–17), Dr Paul Manger noted four errors in the quantitative analysis of the relationship between cetacean encephalization quotients (EQs) and water temperatures, which I suggested was a test of his thermogenesis hypothesis (Manger PR. 2006 Manger, PR. 2006. An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev Camb Philos Soc, 81: 293338.  [Google Scholar]. An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev Camb Philos Soc. 81:293–338). These referred to incorrect raw data on water temperatures for two species, odd use of midpoint temperatures as independent variable, lack of inclusion of data on Mysticeti and the use of a differently derived EQ and midpoints instead of the EQs proposed by Manger and temperature ranges; Dr Manger proposed that these errors invalidate the analysis, with special emphasis in an observation that, since my paper did not address the relationship between EQs and temperature range, it did not actually test the thermogenesis hypothesis. In this Reply, I apologize for the mistakes which were made, and show that re-analysis using all the proposed alterations do not qualitatively or quantitatively alter the final result. I also argue that the relationship between phylogenetically correct EQs and midpoint temperatures is a better test of the thermogenesis hypothesis than the relationship between non-phylogenetic EQs and temperature ranges.  相似文献   
4.
Unmanned aerial vehicles (UAVs) are increasingly used for wildlife research and monitoring, but little information exists on their potential effect on marine mammals. We assessed the effects of a UAV on the behavior of southern right whales (Eubalaena australis) in Australia. Focal follows of ten right whale mother-calf pairs were conducted using a theodolite. Control data were recorded for 30 min, and then a DJI Inspire 1 Pro was flown above the whales for 10 min at 5 m altitude. Potential changes to horizontal behavior (swim speed and turning angle) and surfacing pattern (interbreath intervals) were investigated by comparing mother-calf behavior before and during UAV approaches. Changes in respiration rate were used to quantify energetic effects. We also explored acoustic cue perceptibility of the UAV at 5, 10, and 30 m altitude, by measuring the received UAV underwater noise level on whales equipped with acoustic tags (DTAGs). The received noise levels were 86.0 ± 3.9 dB re 1 μPa, while the measured ambient noise was 80.7 ± 7.3 dB re 1 μPa in the same frequency band (100–1,500 Hz). No behavioral response to the UAV was observed. This provides support for UAVs as a noninvasive tool to study baleen whale behavior and ecophysiology.  相似文献   
5.
6.
The conservation of humpback dolphins, distributed in coastal waters of the Indo‐West Pacific and eastern Atlantic Oceans, has been hindered by a lack of understanding about the number of species in the genus (Sousa) and their population structure. To address this issue, we present a combined analysis of genetic and morphologic data collected from beach‐cast, remote‐biopsied and museum specimens from throughout the known Sousa range. We extracted genetic sequence data from 235 samples from extant populations and explored the mitochondrial control region and four nuclear introns through phylogenetic, population‐level and population aggregation frameworks. In addition, 180 cranial specimens from the same geographical regions allowed comparisons of 24 morphological characters through multivariate analyses. The genetic and morphological data showed significant and concordant patterns of geographical segregation, which are typical for the kind of demographic isolation displayed by species units, across the Sousa genus distribution range. Based on our combined genetic and morphological analyses, there is convincing evidence for at least four species within the genus (S. teuszii in the Atlantic off West Africa, S. plumbea in the central and western Indian Ocean, S. chinensis in the eastern Indian and West Pacific Oceans, and a new as‐yet‐unnamed species off northern Australia).  相似文献   
7.
Genetic sampling and molecular investigations are important parts of studying wild populations. However, collecting tissues from free‐ranging animals can be difficult or impractical. This study develops a sampling and extraction protocol for template DNA from faecal material collected in a marine environment from small cetaceans. DNA was extracted from faecal material of free‐ranging Atlantic spotted dolphins (Stenella frontalis) and subsequently tested for its suitability in molecular investigations by amplifying both mitochondrial and nuclear DNA. The resulting mitochondrial sequences were found to closely match known S. frontalis haplotypes. Three microsatellite loci were amplified and fall within the expected size range for cetaceans. Mother and calf families previously assigned by observation were genetically confirmed using both mitochondrial haplotype and allele sharing between the mother and offspring. The protocol effectively collects and extracts dolphin DNA from faecal samples and enables species identification as well as confirmation of genetic relatedness and should be considered as a noninvasive alternative to current protocols.  相似文献   
8.
Although largely solitary, humpback whales exhibit a number of behaviours where individuals co-operate with one another, for example during bubble net feeding. Such cases could be due to reciprocal altruism brought on by exceptional circumstances, for example the presence of abundant shoaling fish. An alternative explanation is that these behaviours have evolved through kin selection. With little restriction to either communication or movement, diffuse groups of relatives could maintain some form of social organization without the need to travel in tight-nit units. To try to distinguish between these hypotheses, we took advantage of the fact that migrating humpback whales often swim together in small groups. If kin selection is important in humpback whale biology, these groups should be enriched for relatives. Consequently, we analysed biopsy samples from 57 groups of humpback whales migrating off Eastern Australia in 1992. A total of 142 whales were screened for eight microsatellite markers. Mitochondrial DNA sequences (371 bp) were also used to verify and assist kinship identification. Our data add support to the notion that mothers travel with their offspring for the first year of the calf's life. However, beyond the presence of mother-calf/yearling pairs, no obvious relatedness pattern was found among whales sampled either in the same pod or on the same day. Levels of relatedness did not vary between migratory phases (towards or away from the breeding ground), nor between the two sexes considered either overall or in the north or south migrations separately. These findings suggest that, if any social organization does exist, it is formed transiently when needed rather than being a constant feature of the population, and hence is more likely based on reciprocal altruism than kin selection.  相似文献   
9.
Stable isotope analysis (SIA) has emerged as a common tool in ecology and has proven especially useful in the study of animal diet, habitat use, movement, and physiology. SIA has been vigorously applied to the study of marine mammals, because most species live in habitats or undergo large migrations/movements that make them difficult to observe. Our review supplies a complete list of published SIA contributions to marine mammal science and highlights informative case examples in four general research areas: (1) physiology and fractionation, (2) foraging ecology and habitat use, (3) ecotoxicology, and (4) historic ecology and paleoecology. We also provide a condensed background of isotopic nomenclature, highlight several physiological considerations important for accurate interpretation of isotopic data, and identify research areas ripe for future growth. Because it is impossible to conduct controlled laboratory experiments on most marine mammal species, future studies in marine mammal ecology must draw on isotopic data collected from other organisms and be cognizant of key assumptions often made in the application of SIA to the study of animal ecology. The review is designed to be accessible to all audiences, from students unfamiliar with SIA to those who have utilized it in published studies.  相似文献   
10.
The enlargement of cetacean brain size represents an enigmatic event in mammalian evolution, yet its genetic basis remains poorly explored. One candidate gene associated with brain size evolution is the abnormal spindle-like microcephaly associated (ASPM), as mutations in this gene cause severe reductions in the cortical size of humans. Here, we investigated the ASPM gene in representative cetacean lineages and previously published sequences from other mammals to test whether the expansion of the cetacean brain matched adaptive ASPM evolution patterns. Our analyses yielded significant evidence of positive selection on the ASPM gene during cetacean evolution, especially for the Odontoceti and Delphinoidea lineages. These molecular patterns were associated with two major events of relative brain size enlargement in odontocetes and delphinoids. It is of particular interest to find that positive selection was restricted to cetaceans and primates, two distant lineages both characterized by a massive expansion of brain size. This result is suggestive of convergent molecular evolution, although no site-specific convergence at the amino acid level was found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号