首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   75篇
  国内免费   1篇
  170篇
  2024年   10篇
  2023年   2篇
  2021年   1篇
  2020年   22篇
  2019年   21篇
  2018年   23篇
  2017年   18篇
  2016年   23篇
  2015年   7篇
  2014年   7篇
  2013年   10篇
  2012年   4篇
  2011年   7篇
  2010年   1篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
1.
The garnet-type phase Li7La3Zr2O12 (LLZO) attracts significant attention as an oxide solid electrolyte to enable safe and robust solid-state batteries (SSBs) with potentially high energy density. However, while significant progress has been made in demonstrating compatibility with Li metal, integrating LLZO into composite cathodes remains a challenge. The current perspective focuses on the critical issues that need to be addressed to achieve the ultimate goal of an all-solid-state LLZO-based battery that delivers safety, durability, and pack-level performance characteristics that are unobtainable with state-of-the-art Li-ion batteries. This perspective complements existing reviews of solid/solid interfaces with more emphasis on understanding numerous homo- and heteroionic interfaces in a pure oxide-based SSB and the various phenomena that accompany the evolution of the chemical, electrochemical, structural, morphological, and mechanical properties of those interfaces during processing and operation. Finally, the insights gained from a comprehensive literature survey of LLZO–cathode interfaces are used to guide efforts for the development of LLZO-based SSBs.  相似文献   
2.
The utilization of high-voltage intercalation cathodes in calcium-ion batteries (CIBs) is impeded by the substantial size and divalent character of Ca2+ ions, which result in pronounced volume alterations and sluggish ion mobility, consequently causing inferior reversibility and low energy/power densities. To tackle these issues, polyanionic K-vacant KxVPO4F (x∼0, designated as K0VPF) is proposed as high-voltage and ultra-stable cathode material in CIBs. The K0VPF demonstrates a decent calcium storage capacity of 75 mAh g−1 at 10 mA g−1 and remarkable capacity retention of 84.2% over 1000 cycles. The average working voltage of the K0VPF is 3.85 V versus Ca2+/Ca, representing the highest value reported for CIB cathodes to date. The combined experimental and theoretical investigations revealed that the low volume changes and hopping diffusion barriers contribute to the extraordinary stability and high-power capabilities, respectively, of K0VPF. The distribution of Ca ions into polyanionic frameworks with pronounced spatial separation effectively attenuates the Ca2+–Ca2+ repulsive force and thus augmenting the Ca migration kinetics. The high voltage of K0VPF is attributed to the inductive effect from the largely electronegative fluorine. In conjunction with a calcium metal anode and a compatible electrolyte, Ca metal full cells featured a record-high energy density of ≈300 Wh kg−1.  相似文献   
3.
Rechargeable lithium–oxygen batteries (LOBs) are considered to be one of the most promising energy storage systems. However, the use of reactive lithium (Li) metal and the formation of Li dendrites during battery operation would lead to serious safety concerns, especially when flammable liquid electrolytes are utilized. Herein, superior metal–organic framework (MOF) glass-based solid-state electrolytes (SSEs) is developed for stable all-solid-state LOBs (SSLOBs). These non-flammable and boundary-free MOF glass SSEs are capable of suppressing the dendrite growth and exhibiting long-term Li stripping/plating stability, contributing to superior Li+ conductivity (5 × 10−4 S cm−1 at 20 °C), high Li+ transference number (0.86), and good electrochemical stability. It is discovered that discharge product deposition behavior in the solid-solid interface can be well regulated by the ion/electron mixed conducted cathode fabricated with MOF glass SSEs and electronic conductive polymers. As a result, the SSLOBs can be stably recharged for 400 cycles with a low polarization gap and deliver a high capacity of 13552 mAh g−1. The development of this proposed MOF glass displays great application potential in energy storage systems with good safety and high energy density.  相似文献   
4.
An increase in the amount of nickel in LiMO2 (M = Ni, Co, Mn) layered system is actively pursued in lithium‐ion batteries to achieve higher capacity. Nevertheless, fundamental effects of Ni element in the three‐component layered system are not systematically studied. Therefore, to unravel the role of Ni as a major contributor to the structural and electrochemical properties of Ni‐rich materials, Co‐fixed LiNi0.5+xCo0.2Mn0.3–xO2 (x = 0, 0.1, and 0.2) layered materials are investigated. The results, on the basis of synchrotron‐based characterization techniques, present a decreasing trend of Ni2+ content in Li layer with increasing total Ni contents. Moreover, it is discovered that the chex.‐lattice parameter of layered system is not in close connection with the interslab thickness related to actual Li ion pathway. The interslab thickness increases with increasing Ni concentration even though the chex.‐lattice parameter decreases. Furthermore, the lithium ion pathway is preserved in spite of the fact that the c‐axis is collapsed at highly deintercalated states. Also, a higher Ni content material shows better structural properties such as larger interslab thickness, lower cation disorder, and smoother phase transition, resulting in better electrochemical properties including higher Li diffusivity and lower overpotential when comparing materials with lower Ni content.  相似文献   
5.
6.
Transition metal sulfides hold promising potentials as Li‐free conversion‐type cathode materials for high energy density lithium metal batteries. However, the practical deployment of these materials is hampered by their poor rate capability and short cycling life. In this work, the authors take the advantage of hollow structure of CuS nanoboxes to accommodate the volume expansion and facilitate the ion diffusion during discharge–charge processes. As a result, the hollow CuS nanoboxes achieve excellent rate performance (≈371 mAh g?1 at 20 C) and ultra‐long cycle life (>1000 cycles). The structure and valence evolution of the CuS nanobox cathode are identified by scanning electron microscopy, transmission electron microscopy, and X‐ray photoelectron spectroscopy. Furthermore, the lithium storage mechanism is revealed by galvanostatic intermittent titration technique and operando Raman spectroscopy for the initial charge–discharge process and the following reversible processes. These results suggest that the hollow CuS nanobox material is a promising candidate as a low‐cost Li‐free cathode material for high‐rate and long‐life lithium metal batteries.  相似文献   
7.
Sodium ion batteries are attractive for the rapidly emerging large‐scale energy storage market for intermittent renewable resources. Currently a viable cathode material does not exist for practical non‐aqueous sodium ion battery applications. Here we disclose a high performance, durable electrode material based on the 3D NASICON framework. Porous Na3V2(PO4)3/C was synthesized using a novel solution‐based approach. This material, as a cathode, is capable of delivering an energy storage capacity of ~400 mWh/g vs. sodium metal. Furthermore, at high current rates (10, 20 and 40 C), it displayed remarkable capacity retention. Equally impressive is the long term cycle life. Nearly 50% of the initial capacity was retained after 30,000 charge/discharge cycles at 40 C (4.7 A/g). Notably, coulombic efficiency was 99.68% (average) over the course of cycling. To the best of our knowledge, the combination of high energy density, high power density and ultra long cycle life demonstrated here has never been reported before for sodium ion batteries. We believe our findings will have profound implications for developing large‐scale energy storage systems for renewable energy sources.  相似文献   
8.
9.
Dual‐ion batteries (DIBs) with high operation voltage offer promising candidates for low‐cost clean energy chemistries. However, there still exist tough issues, including structural collapse of the graphite cathode due to solvent co‐intercalation and electrolyte decomposition on the electrode/electrolyte interface, which results in unsatisfactory cyclability and fast battery failure. Herein, Li4Ti5O12 (LTO) modified mesocarbon microbeads (MCMBs) are proposed as a cathode material. The LTO layer functions as a skeleton and offers electrocatalytic active sites for in situ generation of a favorable and compatible cathode electrolyte interface (CEI) layer. The synergetic LTO‐CEI network can change the thermodynamic behavior of the PF6? intercalation process and maintain the structural integrity of the graphite cathode, as a “Great Wall” to protect the cathode from structural collapse and electrolyte decomposition. Such LTO‐CEI reinforced cathode exhibits a prolonged cyclability with 85.1% capacity retention after 2000 cycles even at cut‐off potential of 5.4 V versus Li+/Li. Moreover, the LTO‐modified MCMB (+)//prelithiated MCMB (?) full cell exhibits a high energy density of ≈200 Wh kg?1, remarkably enhanced cyclability with 93.5% capacity retention after 1000 cycles. Undoubtedly, this work offers in‐depth insight into interface chemistry, which can arouse new originality to boost the development of DIBs.  相似文献   
10.
Among the various Ni‐based layered oxide systems in the form of LiNi1‐yzCoyAlzO2 (NCA), the compostions between y = 0.1–0.15, z = 0.05 are the most successful and commercialized cathodes used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, tremendous research effort has been dedicted to searching for better composition in NCA systems to overcome the limitations of these cathodes, particularly those that arise when they are used use at high discharge/charge rates (>5C) and in high temperature (60 °C) environments. In addition, improving the thermal stability at 4.5 V is also very important in terms of the total amount of heat generated and the onset temperature. Here, a new NCA composition in the form of LiNi0.81Co0.1Al0.09O2 (y = 0.1, z = 0.09) is reported for the first time. Compared to the LiNi0.85Co0.1Al0.05O2 cathode, LiNi0.81Co0.1Al0.09O2 exhibits an excellent rate capability of 155 mAh g?1 at 10 C with a cut‐off voltage range between 3 and 4.5 V, corresponding to 562 Wh kg?1 at 24 °C. It additionally provides significantly improved thermal stability and electrochemical performance at the high temperature of 60 °C, with a discharge capacity of 122 mAh g?1 after 200 cycles with capacity retention of 59%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号