首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   5篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2014年   2篇
  2013年   9篇
  2011年   1篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
Cathepsins L and B are lysosomal cysteine proteinases whose activities and cellular location are altered in many types of cancers and cancer cell lines. Cathepsins L and B play an unspecified role in cancer invasion and metastasis. The purpose of our study was to determine whether cathepsins L and B are important for the ability of two prostate cancer cell lines, PC3 and DU 145, to invade the basement membrane-like preparation, Matrigel®. Exposure of PC3 and DU145 to the irreversible cysteine proteinase inhibitor, E64, decreases the invasive ability of DU145, but not PC3. PC3 and DU145 were treated with the phorbol ester analogue, phorbol 12-myristate 13-acetate (PMA), a known tumor promoter that activates protein kinase C and contributes to the metastatic phenotype. PMA increased secreted cathepsin L+B activity and the invasive ability of PC3 and DU145; co-exposure to E64 and PMA decreased both cathepsin L+B activity and invasion. We conclude that DU145 requires cathepsin L+B activity more than PC3 for the invasion of the Matrigel®. When the amount of secreted cathepsin L+B activity is increased by PMA treatment, however, PC3 becomes dependent on cathepsin L+B for invasion. Our study demonstrates that modulation of the amount of secreted cathepsin L+B activity influences the invasive phenotype of PC3 and DU145.  相似文献   
2.
Cathepsin-regulated apoptosis   总被引:6,自引:0,他引:6  
Apoptosis can be mediated by different mechanisms. There is growing evidence that different proteolytic enzymes are involved in the regulation of apoptosis. Cathepsins are proteases which, under physiologic conditions, are localized intralysosomally. In response to certain signals they are released from the lysosomes into the cytoplasm where they trigger apoptotic cell death via various pathways, including the activation of caspases or the release of proapoptotic factors from the mitochondria. Here, we review different mechanisms that induce the release of lysosomal enzymes, and the functional relevance of defined cathepsins in defined models of apoptosis.  相似文献   
3.
4.
5.
We extracted proteinase inhibitors from the nacre of the oyster Pinctada margaritifera with water. Mixing the nacre powder with water for 20 h led to a water-soluble fraction [0.24% (wt/wt) of nacre]. After dialysis of the water-soluble matrix through 6- to 8-kDa and 0.5-kDa membranes, the proteinase inhibitors were divided into low and high molecular weight fractions that contained inhibitors of papain, bovine cathepsin B, and human cathepsin L. We studied the heterogeneity of the inhibitors after separating the low molecular weight fraction according to charge and hydrophobicity. After multistep purification, mass spectrometry analysis revealed that a potent inhibitory fraction contained several molecules. This observation demonstrates the difficulties encountered in attempting to isolate individual metabolites from the complex mixture of molecules present in nacre matrix. Interestingly, the low molecular weight fraction contained specific inhibitors that could discern between cathepsin B and cathepsin L. The nacre organic inhibitors were active against several cysteine proteinases, yet they were more specific in relation to serine proteinases, because only proteinase K was inhibited. These results demonstrate, for the first time, the presence of active proteinase inhibitors in the mollusc shell, and it is possible that these inhibitors may play a role in either protection of proteins involved in shell formation or in defense against parasites, or both.  相似文献   
6.

Background

Lung fibrosis is characterized by fibroblast proliferation and the deposition of collagens. Curcumin, a polyphenol antioxidant from the spice tumeric, has been shown to effectively counteract fibroblast proliferation and reducing inflammation and fibrotic progression in animal models of bleomycin-induced lung injury. However, there is little mechanistic insight in the biological activity of curcumin. Here, we study the effects of curcumin on the expression and activity of cathepsins which have been implicated in the development of fibrotic lung diseases.

Methods

We investigated the effects of curcumin administration to bleomycin stimulated C57BL/6 mice and human fetal lung fibroblasts (HFL-1) on the expression of cathepsins K and L which have been implicated in matrix degradation, TGF-β1 modulation, and apoptosis. Lung tissues were evaluated for their contents of cathepsins K and L, collagen, and TGF-β1. HFL-1 cells were used to investigate the effects of curcumin and cathepsin inhibition on cell proliferation, migration, apoptosis, and the expression of cathepsins K and L and TGF-β1.

Results

Collagen deposition in lungs was decreased by 17-28% after curcumin treatment which was accompanied by increased expression levels of cathepsins L (25%-39%) and K (41%-76%) and a 30% decrease in TGF-β1 expression. Moreover, Tunel staining of lung tissue revealed a 33-41% increase in apoptotic cells after curcumin treatment. These in vivo data correlated well with data obtained from the human fibroblast line, HFL-1. Here, cathepsin K and L expression increased 190% and 240%, respectively, in the presence of curcumin and the expression of TGF-β1 decreased by 34%. Furthermore, curcumin significantly decreased cell proliferation and migration and increased the expression of surrogate markers of apoptosis. In contrast, these curcumin effects were partly reversed by a potent cathepsin inhibitor.

Conclusion

This study demonstrates that curcumin increases the expression of cathepsins K and L in lung which an effect on lung fibroblast cell behavior such as proliferation, migration and apoptosis rates and on the expression of TGF-β1 in mouse lung and HFL-1 cells. These results suggest that cathepsin-inducing drugs such as curcumin may be beneficial in the treatment of lung fibrosis.  相似文献   
7.
Colistin, a fatty acyl peptide antibiotic, was attacked by proteolytic enzymes such as papain, ficin and bromelain, and as degradation product, a peptide portion retaining the ring structure of colistin was liberated. In contrast, an analogous antibiotic polymyxin B showed a characteristic resistance to the catalytic activity of papain.

Colistin nonapeptide and α-N-fatty acyl α,γ-diaminobutyric acid were obtained as products from the above enzymatic hydrolyzates of colistin and their chemical and physicochemical properties were investigated.

Contrary to colistin, this colistin nonapeptide was inactive to Escherichia coli. NIHJ and to many other strains even at a concentration of 800 mcg/ml by the agar dilution method. As α-N-fatty acyl α,γ-diaminobutyric acid which is rest part of colistin was added to colistin nonapeptide, antimicrobial activity of colistin nonapeptide did not increase.  相似文献   
8.
When native and acid-denatured lactate dehydrogenase (LDH) were incubated with total lysosomal enzymes in vitro, amino acids from their degradation were produced at various acidic pH. The pH profile in the overall degradation of native LDH was markedly different from that of acid-denatured LDH. Disappearance of the 35-kDa subunit of native LDH was markedly suppressed by a low level of cystatin α as well as by a general cysteine proteinase inhibitor, N-(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucine-3-methylbutylamide (E-64-c). On the other hand, the degradation of acid-denatured LDH was only slightly suppressed by these inhibitors. It was concluded that at least a part of the proteinases involved in the overall degradation of native LDH is different from the proteinases involved in the degradation of acid-denatured form and a role of a cystatin α-sensitive cysteine proteinase is critical in the lysosomal degradation of native LDH, but not in that of acid-denatured form.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号