首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
  国内免费   3篇
  2020年   3篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1985年   2篇
  1978年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
The use of entomopathogenic nematodes on cabbage leaves against larvae of the diamondback moth (DBM) Plutella xylostella requires the addition of formulation adjuvants to achieve satisfying control. Without adjuvants nematodes settle in the tank mix of backpack sprayers causing uneven distribution. The polymers arabic and guar gum, alginate and xanthan were used in concentrations between 0.05 and 0.3% to retard sedimentation of Steinernema carpocapsae. Arabic gum had no effect, guar gum prevented sedimentation at 0.3% but the effect dropped significantly at lower concentration. At 0.05%, xanthan prevented nematode sedimentation better than alginate. Deposition of nematodes on the leaves was significantly increased by the addition of any of the polymers. Spraying nematodes on leaves with an inclination of 45° without the addition of any formulation resulted in 70% run-off. Adding 0.2% alginate or xanthan reduced the losses to <20%. The use of a surfactant–polymer formulation significantly reduced defoliation by DBM larvae. Visual examinations provided evidence that nematodes are not ingested by DBM larvae. Invasion of S. carpocapsae is an active process via the anus. The function of the formulation is not to prolong nematode survival, but to provide environmental conditions which enable rapid invasion of the nematodes. Nematode performance was improved by selection of the best surfactant in combination with xanthan and by optimisation of the concentrations of the surfactant Rimulgan® and the polymer xanthan. The best control results were achieved with Rimulgan® at 0.3% together with 0.3% xanthan, causing DBM mortality of >90% at 80% relative humidity and >70% at 60%. The formulation lowered the LC50 from 12 to 1 nematode/larva. The viscosity of the surfactant–polymer formulations correlated well with nematode efficacy, prevention of sedimentation and adherence to the leave. This physical parameter can therefore be recommended for improvement of nematode formulations to be used for foliar application against DBM.  相似文献   
2.
Abstract.  1. The fungus Neotyphodium lolii forms a symbiotic relationship with its grass host Lolium perenne (perennial ryegrass). The fungus benefits from access to plant nutrients and photosynthate, whereas the plant benefits from acquired chemical defence against herbivory.
2. This study examined the potential for endophyte-mediated plant defences to influence interactions between fall armyworm Spodoptera frugiperda , and the entomopathogenic nematode Steinernema carpocapsae and clarified biological mechanisms underlying the observations made.
3. In laboratory and greenhouse experiments, S. frugiperda larvae were fed endophytic or non-endophytic L. perenne then exposed to S. carpocapsae or injected with the nematodes' symbiotic bacteria Xenorhabdus nematophila .
4. In all instances, S. frugiperda larvae fed endophyte-infected grass suffered significantly lower mortality than those fed non-endophytic plants. Although larvae fed endophyte-infected grass often had significantly lower biomass than those fed uninfected grass, these differences did not account for altered susceptibility to S. carpocapsae .
5. Endophyte-mediated reductions in herbivore susceptibility to the nematode pathogen represent a herbivore adaptation that effectively turns the tables on both plant and natural enemy by reducing the virulence of the nematodes' symbiotic bacteria while expanding the temporal window of herbivory.  相似文献   
3.
Entomopathogenic nematodes and parasitoid larvae of some wasps play important roles in the natural control of the pest insects. However, it has not been excluded that competition between nematodes and wasps may in some cases reduce their efficacy in the pest control. Using caterpillars of Spodoptera littoralis, we examined interactions between the nematode Steinernema carpocapsae and the venom of the parasitoid Habrobracon hebetor. The survival of S. littoralis caterpillars was reduced in a dose-dependent manner when 5 to 500 nematodes or 0.005–0.1 venom units were applied to single caterpillars. High doses of either nematodes or the venom caused death within 1–3 days in all treated hosts. The low doses of nematodes killed caterpillars within a week, in some cases when they attempted to pupate. Caterpillars receiving low venom doses were characterized by extended survival time terminated with death due to starvation. Combined treatment of nematodes and the venom were mutually synergistic and elicited severe lethal effects. The nematodes were fully resistant to the venom and can feed and grow on the symbiotic bacteria in vitro. The venom impairs food processing and causes death of caterpillars due to starvation. Disruption of the hormonal regulation of metamorphosis by ecdysteroids and juvenile hormone could be responsible for defective moults block at different stages of the moulting process, regionally restricted moulting, moults to “intermediates” combining regions of newly secreted larval and pupal cuticles.  相似文献   
4.
Infectivity of entomopathogenic nematode (EPN) Steinernema carpocapsae Pocheon strain on the green peach aphid Myzus persicae and its parasitic wasps (e.g., Aphidius colemani, Aphidius gifuensis and Diaeretiella rapae) was evaluated under laboratory conditions. Infective juveniles (IJs) of S. carpocapsae Pocheon strain had low infectivity against nymph and adult stages of M. persicae, showing 2% and 6.7% of mortality, respectively. Application of the EPNs had little effect on mummies caused by the three parasitoid species, allowing them to remain intact. No IJ invaded the host, regardless of EPN application rate. The parasitoid emergence from mummies ranged from 80% to 85% in the presence of EPN while 79–86% was recorded in the absence of EPN. However, the presence of the IJs reduced oviposition by the three parasitoid species, decreasing the rate up to 59% when the nematodes were applied before parasitoid release, while little difference in oviposition was observed when nematodes were applied after parasitoid release.  相似文献   
5.
At high dosages, infective-stage juveniles of Neoaplectana carpocapsae and Heterorhabditis heliothidis were able to penetrate into and kill the garden millipede. Nematode development was inhibited by host defense reactions which consisted of encapsulation and enmeshment in tracheoles and connective tissue surrounding the millipede's midgut. Foreign bacteria quickly entered the millipede's hemocoel at death and out-competed the nematode's symbiotic bacteria, Xenorhabdus sp. The dauer stages of an unidentified rhabditid nematode were associated with the living millipede. These nematodes reproduced on the millipede's cadaver.  相似文献   
6.
The effect of different osmolytes on the viability and the effect of osmotic pressure on the induction of a dormant state similar to that caused by a slow desiccation rate were evaluated in the entomopathogenic nematode Steinernema carpocapsae ‘All’. For both experiments, a high-temperature (45°C) assay (HTA) was employed. Exposing fresh infective juveniles to the HTA resulted in a drastic reduction in viability. Using the same assay, the mortality of desiccated nematodes was gradual, showing an enhanced ability to withstand high-temperature conditions. The patterns of decline in viability in the evaporatively dehydrated and the osmotically desiccated nematodes were similar. Most of the salts tested in the screening assay caused high mortality levels among the nematodes within the first 24 h of exposure. In contrast, the nonionic solutes tested did not hamper the viability of the infective juveniles. In these nonionic solutions, all nematodes were completely shrunk after 48 h. Furthermore, 72-h exposure to these solutions resulted in an increase in heat tolerance similar to that of the evaporatively dehydrated nematodes. A substantial increase in heat tolerance was recorded in the treatments with glycerol solutions at concentrations from 2.2 to 3.8 M. A similar effect was obtained by polyethylene glycol (PEG) 300 MW at concentrations ranging from 1.2 to 1.6 M. PEG 600 MW induced enhancement of heat tolerance at a concentration of 0.8 M. A high level of viability was attained among nematodes that were stored for 72 days following a gradual increase in glycerol concentrations. Exposure of these nematodes to 45°C in the HTA resulted in 87.3 ± 4.7 and 49.2 ± 3.9% survival after 4 and 8 h, respectively. Reduction in viability was observed among nematodes that were directly exposed to the glycerol solution over a 19-day storage period. With this treatment, survival levels of 72.7 ± 3.9 and 26.5 ± 4.7% after 4 and 8 h, respectively, were recorded in the HTA. Reduction in viability among nematodes stored in distilled water was noted after 36 days of storage. Evaluation of nematode infectivity by two criteria (insect mortality and invasion rate) indicated that infectivity of nematodes desiccated by gradual osmotic pressure induced by glycerol was similar to that of fresh nematodes after 54 days in storage at 25°C. In comparison, infectivity of nematodes stored in distilled water declined significantly compared to that of fresh nematodes.  相似文献   
7.
病原线虫对桔小实蝇种群的控制作用   总被引:15,自引:2,他引:15  
通过室内和田间实验研究了昆虫病原线虫对桔小实蝇Bactrocera (Bactrocera) dorsalis (Hendel)的控制作用。室内实验结果表明,供试的3种线虫的4个品系(小卷蛾斯氏线虫Steinernema carpocapsae All品系与A24品系,夜蛾斯氏线虫Steinernema feltiae SN品系和嗜菌异小杆线虫Heterorhabditis bacteriophora H06品系),以小卷蛾斯氏线虫All品系对桔小实蝇的侵染力最强,其3天的LD50和LD95分别为35.0和257.1条/cm2土壤。按300条/cm2土壤的量施用,小卷蛾斯氏线虫All品系对当代桔小实蝇的控制效果为86.3%。用以虫期作用因子组建的生命表方法评价了小卷蛾斯氏线虫All品系对田间桔小实蝇下代种群的控制作用,结果表明,按300条/cm2土壤的量施用线虫,对照杨桃园的桔小实蝇种群趋势指数为105.9,而处理杨桃园的桔小实蝇种群趋势指数下降为15.5;小卷蛾斯氏线虫All品系对桔小实蝇的干扰控制指数为0.146,即线虫处理果园的下代种群密度仅为对照果园的14.6%。  相似文献   
8.
Infective juveniles of the entomopathogenic nematode Steinernema carpocapsae show a low level of locomotory activity that is presumed to limit their usefulness as biological insecticides. A 30 μg ml-1 solution of the carbamate pesticide oxamyl reduced the proportion of nonmobile nematodes by nearly two thirds to 35%, while stimulating a 7.5-fold increase in sinusoidal movement. This increase in activity did not result in a corresponding increase in host-finding. Oxamyl treatment did not enhance infective juvenile pathogenicity to Galleria mellonella larvae. At higher concentrations, oxamyl caused aberrant nematode movement and partial paralysis. Heterorhabditis bacteriophora infective juveniles maintain a high level of locomotory activity. Treatment with 30 μg ml-1 oxamyl increased the proportion of sinusoidal over nonsinusoidal movements, but infective juvenile host-finding and pathogenicity were significantly reduced. Higher rates impaired movement and induced complete paralysis. We conclude that oxamyl is incompatible with S. carpocapsae and H. bacteriophora. The concept of chemically activating infective juveniles to increased locomotory activity and thereby achieving enhanced efficacy is inconsistent with our results.  相似文献   
9.
Aim of this study was to investigate relationships between the red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier) and the entomopathogenic nematode Steinernema carpocapsae (EPN); particularly, the work was focused on the immune response of the insect host in naive larvae and after infection with the EPN. Two main immunological processes have been addressed: the activity and modulation of host prophenoloxidase‐phenoloxidase (proPO) system, involved in melanization of not‐self and hemocytes recognition processes responsible for not‐self encapsulation. Moreover, immune depressive and immune evasive strategies of the parasite have been investigated. Our results suggest that RPW possess an efficient immune system, however in the early phase of infection, S. carpocapsae induces a strong inhibition of the host proPO system. In addition, host cell‐mediated mechanisms of encapsulation, are completely avoided by the parasite, the elusive strategies of S. carpocapsae seem to be related to the structure of its body‐surface, since induced alterations of the parasite cuticle resulted in the loss of its mimetic properties. S. carpocapsae before the release of its symbiotic bacteria, depress and elude RPW immune defenses, with the aim to arrange a favorable environment for its bacteria responsible of the septicemic death of the insect target.  相似文献   
10.
Codling moth (CM), Cydia pomonella (L.) is the most serious pest of apple and other pome fruit worldwide. In temperate climates, diapausing cocooned larvae make up 100% of the population. Control of this stage would reduce or eliminate damage by first generation CM in late spring and early summer. Entomopathogenic nematodes (EPNs) are good candidates for control of CM in the cryptic habitats where the larvae overwinter. The two predominant limiting factors for EPNs are adequate moisture and temperatures below 15°C. Formulation that maintains moisture and enables survival of EPN infective juveniles (IJs) until they can infect overwintering larvae would significantly improve their utility for protection of apple, pear and walnut. In laboratory studies conducted in moist mulch (consisting of apple and conifer wood), Galleria mellonella (L.) larvae infected with Steinernema carpocapsae (Weiser), S. feltiae (Filipjev), or Heterorhabditis bacteriophora Poinar and coated with starch and clay, produced mean mortalities of 42, 88, and 24%, respectively in CM larvae. Mulched field plots treated with formulated S. carpocapsae- or S. feltiae-infected G. mellonella larvae, then followed by an application of wood flour foam as an anti-desiccant, resulted in 56 and 86% mortality, respectively. Comparative tests of aqueous suspensions of S. carpocapsae IJs applied to cardboard bands on apple tree trunks followed by water, fire retardant gel or foam resulted in 11, 35, and 85% respective mortalities. Identical tests with S. feltiae resulted in 20, 19, and 97% respective mortalities. Our research with cadaver formulations of EPNs in mulch and aqueous suspensions on tree trunks combined with anti-desiccant agents, demonstrated significant improvement in larvicidal activity for diapausing cocooned CM larvae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号