首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2013年   3篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
排序方式: 共有16条查询结果,搜索用时 234 毫秒
1.
1. Hemichannels formed by connexin26 (Cx26) on the horizontal cell dendrites that invaginate cone terminals in the vertebrate retina have been implicated in the feedback mechanism by which horizontal cells regulate transmitter release from cone photoreceptors. However, their membrane properties had not been studied previously, and it was unclear whether they could subserve their purported function at the membrane potentials over which horizontal cells operate. 2. We used the two-electrode voltage clamp technique to record the membrane currents and pharmacological properties of Cx26 hemichannels formed in the Xenopus oocyte expression system. 3. Oocytes expressing Cx26 exhibited large membrane conductances over a broad range of hyperpolarizing and depolarizing membrane potentials, and displayed little evidence of voltage-dependent gating, indicating that the hemichannels are constitutively open. The Cx26-mediated nonjunctional currents were relatively insensitive to quinine, a cinchona alkaloid that opens hemichannels formed by several other connexins. However, the hemichannel currents were blocked by carbenoxolone, a rise in extracellular calcium, or lowering intracellular pH. The currents could also be suppressed by reducing extracellular pH, and by the chloride channel blocker NPPB through its direct interaction with Cx26 hemichannels. 4. These findings provide a basis with which to evaluate the in situ pharmacological studies that attempt to assess the putative role of Cx26 hemichannels in the feedback pathway in the distal retina.  相似文献   
2.
3.
The pannexin-1 (Panx1) channel has been reported to mediate the release of ATP that is involved in local tissue inflammation, obesity, and many chronic degenerative diseases. It remains unknown whether Panx1 is present in podocytes and whether this channel in podocytes mediates ATP release leading to glomerular inflammation or fibrosis. To answer these questions, we first characterized the expression of Panx channels in podocytes. Among the three known pannexins, Panx1 was the most enriched in podocytes, either cultured or native in mouse glomeruli. Using a Port-a-Patch planar patch-clamp system, we recorded a large voltage-gated outward current through podocyte membrane under the Cs+in/Na+out gradient. Substitution of gluconate or aspartate for chloride in the bath solution blocked voltage-gated outward currents and shifted the reversal potential of Panx1 currents to the right, indicating the anion permeability of this channel. Pharmacologically, the recorded voltage-gated outward currents were substantially attenuated by specific Panx1 channel inhibitors. Given the anti-inflammatory and intracellular ATP restorative effects of adiponectin, we tested whether this adipokine inhibits Panx1 channel activity to block ATP release. Adiponectin blocked Panx1 channel activity in podocytes. Mechanistically, inhibition of acid ceramidase (AC) remarkably enhanced Panx1 channel activity under control conditions and prevented the inhibition of Panx1 channel by adiponectin. Correspondingly, intracellular addition of AC products, sphingosine or sphingosine-1-phosphate (S1P), blocked Panx1 channel activity, while elevation of intracellular ceramide had no effect on Panx1 channel activity. These results suggest that adiponectin inhibits Panx1 channel activity in podocytes through activation of AC and associated elevation of intracellular S1P.  相似文献   
4.
Carbenoxolone (CBX) is a clinically prescribed drug for the treatment of digestive ulcer and inflammation. It is also a widely used pharmacological inhibitor of several channels in basic research. Given that the overactivity of several channels, including those inhibitable by CBX, underlies bladder dysfunction, we tested the potential therapeutic application and mechanism of CBX in the treatment of voiding dysfunction. In a mouse model of cystitis induced by cyclophosphamide (CYP), CBX administration prevented the CYP‐elicited increase in bladder weight, oedema, haemorrhage, and urothelial injury. CBX also greatly improved micturition pattern, as manifested by the apparently decreased micturition frequency and increased micturition volume. Western blot results showed that CBX suppressed CYP‐induced increase in protein carbonyls, COX‐2, and iNOS. Further analysis using cultured urothelial cells revealed that acrolein, the major metabolite of CYP, caused protein oxidation, p38 activation, and urothelial injury. These effects of acrolein were reproduced by TRPV4 agonists and significantly prevented by antioxidant NAC, p38 inhibitor SB203580, TRPV4 antagonist RN‐1734, and CBX. Further studies showed that CBX potently suppressed TRPV4 agonist‐initiated calcium influx and subsequent cell injury. CBX attenuated CYP‐induced cystitis in vivo and reduced acrolein‐induced cell injury in vitro, through mechanisms involving inhibition of TRPV4 channels and attenuation of the channel‐mediated oxidative stress. CBX might be a promising agent for the treatment of bladder dysfunction.  相似文献   
5.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   
6.
Astrocytes are highly coupled by gap junction channels, which allow transfer of intracellular signalling molecules and metabolites between connected cells. Astrocytic gap junctions remain open during ischemic conditions as previously demonstrated in vitro and in situ. In this study, we investigated the effect of gap junction blockage on iodoacetate-induced ATP depression and cell death progression in astrocytes in primary rat hippocampal cultures. We demonstrated that blockage of gap junctions during iodoacetate-induced inhibition of the glycolysis induced an earlier onset of the ATP depression. Moreover, initiation of apoptotic processes, demonstrated by binding of Annexin V, was critically dependent on the ATP levels. The apoptotic event was also shown to spread and involve neighbouring cells, a process that was inhibited by blockage of gap junction communication. Chelating intracellular calcium using BAPTA-AM decelerated the iodoacetate-induced ATP depression. The chelation also decelerated the spreading of apoptotic processes. Inhibition of caspases did not alter the expansion of cell groups being Annexin V positive. However, the proportion of Annexin V positive cells also being propidium iodide positive was increased after caspase inhibition. The results show that inhibition of gap junctions during cellular metabolic depression interferes with the metabolic status and cell death progression in astrocytes.  相似文献   
7.
The maintenance of cellular ion homeostasis is crucial for optimal neural function and thus it is of great importance to understand its regulation. Glial cells are extensively coupled by gap junctions forming a network that is suggested to serve as a spatial buffer for potassium (K+) ions. We have investigated the role of glial spatial buffering in the regulation of extracellular K+ concentration ([K+]o) within the locust metathoracic ganglion by pharmacologically inhibiting gap junctions. Using K+-sensitive microelectrodes, we measured [K+]o near the ventilatory neuropile while simultaneously recording the ventilatory rhythm as a model of neural circuit function. We found that blockade of gap junctions with either carbenoxolone (CBX), 18β-glycyrrhetinic acid (18β-GA) or meclofenamic acid (MFA) reliably induced repetitive [K+]o surges and caused a progressive impairment in the ability to maintain baseline [K+]o levels throughout the treatment period. We also show that a low dose of CBX that did not induce surging activity increased the vulnerability of locust neural tissue to spreading depression (SD) induced by Na+/K+-ATPase inhibition with ouabain. CBX pre-treatment increased the number of SD events induced by ouabain and hindered the recovery of [K+]o back to baseline levels between events. Our results suggest that glial spatial buffering through gap junctions plays an essential role in the regulation of [K+]o under normal conditions and also contributes to a component of [K+]o clearance following physiologically elevated levels of [K+]o.  相似文献   
8.

Background

The peptide mastoparan 7 (MST7) stimulated ATP release in human erythrocytes. We explored intra- and extracellular processes governing the time-dependent accumulation of extracellular ATP (i.e., ATPe kinetics).

Methods

Human erythrocytes were treated with MST7 in the presence or absence of two blockers of pannexin 1. ATPe concentration was monitored by luciferin–luciferase based real-time luminometry.

Results

Exposure of human erythrocytes to MST7 led to an acute increase in [ATPe], followed by a slower increase phase. ATPe kinetics reflected a strong activation of ATP efflux and a low rate of ATPe hydrolysis by ectoATPase activity. Enhancement of [ATPe] by MST7 required adhesion of erythrocytes to poly-D-lysin-coated coverslips, and correlated with a 31% increase of cAMP and 10% cell swelling. However, when MST7 was dissolved in a hyperosmotic medium to block cell swelling, ATPe accumulation was inhibited by 49%.Erythrocytes pre-exposure to 10 μM of either carbenoxolone or probenecid, two blockers of pannexin 1, exhibited a partial reduction of ATP efflux.Erythrocytes from pannexin 1 knockout mice exhibited similar ATPe kinetics as those of wild type mice erythrocytes exposed to pannexin 1 blockers.

Conclusions

MST7 induced release of ATP required either cell adhesion or strong activation of cAMP synthesis. Part of this release required cell swelling. Kinetic analysis and a data driven model suggested that ATP efflux is mediated by two ATP conduits displaying different kinetics, with one conduit being fully blocked by pannexin 1 blockers.

General significance

Kinetic analysis of extracellular ATP accumulation from human erythrocytes and potential effects on microcirculation.  相似文献   
9.
Receptor activator of NF-kappaB ligand (RANKL) is crucial in osteoclastogenesis but signaling events involved in osteoclast differentiation are far from complete and other signals may play a role in osteoclastogenesis. A more direct pathway for cellular crosstalk is provided by gap junction intercellular channel, which allows adjacent cells to exchange second messengers, ions, and cellular metabolites. Here we have investigated the role of gap junction communication in osteoclastogenesis in mouse bone marrow cultures. Immunoreactive sites for the gap junction protein connexin 43 (Cx43) were detected in the marrow stromal cells and in mature osteoclasts. Carbenoxolone (CBX) functionally blocked gap junction communication as demonstrated by a scrape loading Lucifer Yellow dye transfer technique. CBX caused a dose-dependent inhibition (significant > or = 90 microM) of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells formed in 7- to 8-day marrow cultures stimulated by parathyroid hormone (PTH; 10 nM) or forskolin (FSK; 1 microM). Furthermore, CBX (100 microM) significantly inhibited prostaglandin E2 (PGE2; 10 microM) and 1,25(OH)2-vitamin D3 stimulated osteoclast differentiation in the mouse bone marrow cultures. Consequently, quantitative real-time polymerase chain reaction (PCR) analysis demonstrated that CBX downregulated the expression of osteoclast phenotypic markers, but without having any significant effects on RANK, RANKL, and osteoprotegerin (OPG) mRNA expression. However, the results demonstrated that CBX significantly inhibits RANKL-stimulated (100 ng/ml) osteoclastogenesis in the mouse bone marrow cultures. Taken together, our results suggests that gap junctional diffusion of messenger molecules interacts with signaling pathways downstream RANKL in osteoclast differentiation. Further studies are required to define the precise mechanisms and molecular targets involved.  相似文献   
10.
We have previously shown that endothelin-1 increases glucose uptake in astrocytes. In the present work we investigate the mechanism through which endothelin-1 (ET-1) increases glucose uptake. Our results show that ET-1 activates a short-term and a long-term mechanism. Thus, ET-1 induced a rapid change in the localization of both GLUT-1 and type I hexokinase. These changes are probably aimed at rapidly increasing the entry and phosphorylation of glucose. In addition, ET-1 upregulated GLUT-1 and type I hexokinase and induced the expression of isoforms not normally expressed in astrocytes, such as GLUT-3 and type II hexokinase. These changes provide astrocytes with the machinery required to sustain a high rate of glucose uptake for a longer period of time. Our previous work had suggested that the effect of ET-1 on glucose uptake was associated with the inhibition of gap junctions. In this work, we compare the effect of ET-1 with that of carbenoxolone, a classical inhibitor of gap junction communication. Carbenoxolone increased glucose uptake to the same extent as ET-1 following the same mechanisms. Thus, carbenoxolone induced a rapid change in the localization of both GLUT-1 and type I hexokinase, upregulated GLUT-1 and type I hexokinase and induced the expression of GLUT-3 and type II hexokinase. When the inhibition of gap junction was prevented by tolbutamide, neither ET-1 nor carbenoxolone were able to increase the levels of GLUT-1, GLUT-3, type I hexokinase or type II hexokinase, indicating that these events are closely related to gap junctions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号