首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   7篇
  国内免费   2篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   11篇
  2012年   4篇
  2011年   11篇
  2010年   10篇
  2009年   12篇
  2008年   6篇
  2007年   9篇
  2006年   16篇
  2005年   13篇
  2004年   9篇
  2003年   10篇
  2002年   7篇
  2001年   4篇
  2000年   5篇
  1999年   8篇
  1998年   5篇
  1997年   6篇
  1996年   1篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   7篇
  1983年   9篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
排序方式: 共有217条查询结果,搜索用时 31 毫秒
1.
Summary The actions of cyclic AMP are subject to several levels of post-receptor modulation in cardiac tissue. Isoproterenol and prostaglandin E1 both stimulate cAMP accumulation, but only isoproterenol causes activation of particulate cAMP-dependent protein kinase, leading to activation of phosphorylase kinase and glycogen phosphorylase, and inhibition of glycogen synthase. Through the use of isolated, adult ventricular myocytes, we have determined that the hormone-specific activation of glycogen phosphorylase is due to subcellular compartmentation of cAMP. There is some evidence that cyclic nucleotide phosphodiesterases, whose activity is stimulated by alpha1-adrenergic agonists in isolated myocytes, may have a role in compartmentation. Phosphoinositide hydrolysis is stimulated by alpha, and muscarinic agonists, presumably leading to activation of protein kinase C, which in turn has multiple effects on hormone-sensitive adenylate cyclase.Abbreviations cAMP Adenosine-3,5-Cyclic Monophosphate - cGMP Guanosine-3,5-Cyclic Monophosphate - Gi, GS Guanine nucleotide-binding proteins linked to inhibition and stimulation, respectively, of adenylate cyclase - GTP Guanosine-5-triphosphate - PDE Cyclic Nucleotide Phosphodiesterase - PGE1 Prostaglandin E1  相似文献   
2.
Regulation of nicotinic acetylcholine receptors by protein phosphorylation   总被引:3,自引:0,他引:3  
Neurotransmitter receptors and ion channels play a critical role in the transduction of signals at chemical synapses. The modulation of neurotransmitter receptor and ion channel function by protein phosphorylation is one of the major regulatory mechanisms in the control of synaptic transmission. The nicotinic acetylcholine receptor (nAcChR) has provided an excellent model system in which to study the modulation of neurotransmitter receptors and ion channels by protein phosphorylation since the structure and function of this receptor have been so extensively characterized. In this article, the structure of the nAcChR from the electric organ of electric fish, skeletal muscle, and the central and peripheral nervous system will be briefly reviewed. Emphasis will be placed on the regulation of the phosphorylation of nAcChR by second messengers and by neurotransmitters and hormones. In addition, recent studies on the functional modulation of nicotinic receptors by protein phosphorylation will be reviewed.  相似文献   
3.
Summary The Na+–H+ exchanger from solubilized rabbit renal brush border membranes is inhibited by cAMP-dependent protein kinase (PKA) mediated protein phosphorylation. To characterize this inhibitory response and its sensitivity to limited proteolysis, the activity of the transporter was assayed after reconstitution of the proteins into artificial lipid vesicles. Limited trypsin digestion increased the basal rate of proton gradient-stimulated, amiloride-inhibitable sodium uptake in reconstituted proteoliposomes and blocked the inhibitory response to PKA-mediated protein phosphorylation. To determine if the inhibitory response to PKA-mediated protein phosphorylation could be restored to the trypsin-treated solubilized proteins, nontrypsinized solubilized brush border membrane proteins were separated by column chromatography. The addition of small molecular weight polypeptides, fractionated on Superose-12 FPLC (V e=0.7), to trypsinized solubilized brush border membrane proteins restored the inhibitory response to PKA-mediated protein phosphorylation. Similarly, the addition of the 0.1m NaCl fraction from an anion exchange column, Mono Q-FPLC, also restored the inhibitory response to PKA. Both protein fractions contained a common 42–43 kDa protein which was preferentially phosphorylated by PKA.These results indicate that limited trypsin digestion dissociates the activity of the renal Na+–H+ exchanger from its regulation by PKA. It is suggested that trypsin cleaves an inhibitory component of the transporter and that this component is the site of PKA-mediated regulation. Phosphoprotein analysis of fractions that restored PKA regulation raises the possibility that a polypeptide of 42–43 kDa is involved in the inhibition of the renal Na+–H+ exchanger by PKA-mediated, protein phosphorylation.  相似文献   
4.
In the present study, immunogold labeling of ultrathin sections of ejaculated sperm was used to obtain insight into the ultrastructural localization and presumable function of type II cAMP-dependent protein kinase in sperm motion. In the flagellum, a human-specific isoform of the RIIα subunit was located on the axonemal microtubule wall, whereas a different isoform of broader specificity was present in the cytoplasm at the periphery of the coarse fibers and fibrous sheath. This isoform was also found in the mitochondria. The human-specific RIIα subunit is likely linked to microtubules by a unique binding protein of Mr 72kD. These findings are in agreement with the concept of a concerted mechanism involving phosphorylation of both the axonemal microtubules and the fibrous structures for the regulation of mammalian sperm motion. © 1994 Wiley-Liss, Inc.  相似文献   
5.
In addition to itsintra-cellular functions, cAMP-dependent protein kinase (PKA) may well have anextra-cellular regulatory role in blood. This suggestion is based on the following experimental findings: (a) Physiological stimulation of blood platelets brings about a specific release of PKA, together with its co-substrates ATP and Mg++; (b) In human serum, an endogenous phosphorylation of one protein (p75, Mr 75 kDa) occurs; this phosphorylation is enhanced by addition of cAMP and blocked by the Walsh-Krebs specific PKA inhibitor; (c) No endogenous phosphorylation of p75 occurs in human plasma devoid of platelets, but the selective labeling of p75 can be reproduced by adding to plasma the pure catalytic subunit of PKA; (d) p75 was shown to be vitronectin (V), a multifunctional protein implicated in processes associated with platelet activation, and thus a protein whose function may require modulation for control; (e) The phosphorylation of vitronectin occurs at one site (Ser378) which, at physiological pH, is buried in its two-chain form (V65+10) but becomes exposed in the presence of glycosaminoglycans (GAGs) e.g. heparin or heparan sulfate. Such a transconformation may be used for targeting the PKA phosphorylation to vitronectin molecules bound to GAGs, for example in the extracellular matrix or on cell surfaces; (f) From the biochemical point of view (Km values and physiological concentrations) the phosphorylation of vitronectin can take place at the locus of a hemostatic event; (g) The phosphorylation of Ser378 in vitronectin alters its function, since it significantly reduces its ability to bind the inhibitor-1 of plasminogen activator(s) (PAI-1). Physiologically, this functional modulation may be involved in unleashing PAI-1, allowing its translocation to control the inhibitory function of PAI-1 and, through it, regulating the conversion of plasminogen to active plasmin.Dedicated to Edmond H. Fischer and Edwin G. Krebs, with gratitude for teaching us the right measure of thoroughness and vision in research.  相似文献   
6.
Effects of phosphorylation of P-glycoprotein on multidrug resistance   总被引:2,自引:0,他引:2  
Cells expressing elevated levels of the membrane phosphoprotein P-glycoprotein exhibit a multidrug resistance phenotype. Studies involving protein kinase activators and inhibitors have implied that covalent modification of P-glycoprotein by phosphorylation may modulate its biological activity as a multidrug transporter. Most of these reagents, however, have additional mechanisms of action and may alter drug accumulation within multidrug resistant cells independent of, or in addition to their effects on the state of phosphorylation of P-glycoprotein. The protein kinase(s) responsible for P-glycoprotein phosphorylation has(ve) not been unambiguously identified, although several possible candidates have been suggested. Recent biochemical analyses demonstrate that the major sites of phosphorylation are clustered within the linker region that connects the two homologous halves of P-glycoprotein. Mutational analyses have been initiated to confirm this finding. Preliminary data obtained from phosphorylation- and dephosphorylation-defective mutants suggest that phosphorylation of P-glycoprotein is not essential to confer multidrug resistance.  相似文献   
7.
Elementary K+ currents through isolated ATP-sensitive K+ channels from neonatal rat cardiocytes were recorded to study their temperature dependence between 9°C and 39°C. Elementary current size and, thus, K+ permeation through the open pore varied monotonically with temperature with a Q10 of 1.25 corresponding to a low activation energy of 3.9 kcal/mol. Open-state kinetics showed a complicated temperature dependence with Q10 values of up to 2.94. Arrhenius anomalies of open(1) and open(2) indicate the occurrence of thermallyinduced perturbations with a dominating influence on channel portions that are involved in gating but are obviously ineffective in altering pore-forming segments. At 39°C, open-state exit reactions were associated with the highest activation energy (O2 exit reaction: 12.1 kcal/ mol) and the largest amount of entropy. A transition from 19°C to 9°C elucidated a paradoxical kinetic response, shortening of both O-states, irrespective of the absence or presence of cAMP-dependent phosphorylation. Another member of the K+ channel family and also a constituent of neonatal rat cardiocyte membranes, 66 pS outwardly-rectifying channels, was found to react predictably since open increased on cooling. Obviously, cardiac K (ATP) + channels do not share this exceptional kinetic responsiveness to a temperature transition from 19°C to 9°C with other K+ channels and have a unique sensitivity to thermally-induced perturbations.  相似文献   
8.
9.
Summary The role of adenosine 3,5-monophosphate (cAMP) dependent protein kinase (PK-A) on the Cl conductance has been studied in the apical membrane vesicles purified from the chorionic villi of human placenta. In order to phosphorylate the cytosolic side of the membranes, vesicles have been hypotonically lysed, loaded with 100nm catalytic subunit of PK-A purified from human placenta and 1mm of the phosphatase resistant adenosine 5-thiotriphosphate (ATP-gamma-S) and resealed. Cl conductance has been measured by the quenching of the fluorescent probe 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) at 23°C with membrane potential clamped at 0 mV. The actual volume of the resealed vesicles was measured in each experiment by trapping an impermeable radioactive molecule ([14C]-sucrose) and included in each Cl flux calculation. In 19 independent experiments, the mean Cl conductance in placental membranes in the absence of phosphorylation was 3.67±3.18 whereas with the addition of PK-A and ATP-gamma-S it was 1.97±1.75 nmol·sec–1·(mg protein)–1 (mean±sd). PK-A dependent phosphorylation reduced the Cl conductance in 14/19 experiments. The same protocol applied to the apical membranes of bovine trachea, where PK-A is known to activate the Cl channels, confirmed that the PK-A dependent phosphorylation increased the Cl conductance in 11/13 experiments, from 1.01±0.61 to 1.85±0.99 nmol·sec–1·(mg protein)–1(mean±sd). These studies indicate that the PK-A dependent phosphorylation inhibits one or more Cl channel(s) of the apical membranes of human placenta.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号