首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
  国内免费   1篇
  2017年   1篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
  2000年   3篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1988年   1篇
排序方式: 共有42条查询结果,搜索用时 375 毫秒
1.
Pseudomonas sp. strain 267 isolated from soil promoted growth of different plants under field conditions and enhanced symbiotic nitrogen fixation in clover under gnotobiotic conditions. This strain produced pyoverdine-like compound under low-iron conditions and secreted vitamins of the B group. The role of fluorescent siderophore production in the beneficial effect of strain 267 on nodulated clover plants was investigated. Several non-fluorescent (Pvd-) Tn5 insertion mutants of Pseudomonas sp. strain 267 were isolated and characterized. The presence of Tn5 insertions was confirmed by Southern analysis of EcoRI digested genomic DNA of each derivative strain. The siderophore-negative mutants were compared to the parental strain with respect to their growth promotion of nodulated clover infected with Rhizobium leguminosarum bv. trifolii 24.1. We found that all isolated Pvd- mutants stimulated growth of nodulated clover plants in a similar manner to the parental strain. No consistent differences were observed between strain 267 and Pvd- derivatives strains with respect to their plant growth promotion activity under gnotobiotic conditions.Dr Deryto died in august 1994  相似文献   
2.
Mutch LA  Young JP 《Molecular ecology》2004,13(8):2435-2444
The symbiotic partnerships between legumes and their root-nodule bacteria (rhizobia) vary widely in their degree of specificity, but the underlying reasons are not understood. To assess the potential for host-range evolution, we have investigated microheterogeneity among the shared symbionts of a group of related legume species. Host specificity and genetic diversity were characterized for a soil population of Rhizobium leguminosarum biovar viciae (Rlv) sampled using six wild Vicia and Lathyrus species and the crop plants pea (Pisum sativum) and broad bean (Vicia faba). Genetic variation among 625 isolates was assessed by restriction fragment length polymorphism (RFLP) of loci on the chromosome (ribosomal gene spacer) and symbiosis plasmid (nodD region). Broad bean strongly favoured a particular symbiotic genotype that formed a distinct phylogenetic subgroup of Rlv nodulation genotypes but was associated with a range of chromosomal backgrounds. Host range tests of 80 isolates demonstrated that only 34% of isolates were able to nodulate V. faba. By contrast, 89% were able to nodulate all the local wild hosts tested, so high genetic diversity of the rhizobial population cannot be ascribed directly to the diversity of host species at the site. Overall the picture is of a population of symbionts that is diversified by plasmid transfer and shared fairly indiscriminately by local wild legume hosts. The crop species are less promiscuous in their interaction with symbionts than the wild legumes.  相似文献   
3.
Plant growth promoting Pseudomonas fluorescens strain 267, isolated from soil, produced pseudobactin A, 7-sulfonic acid derivatives of pseudobactin A and several B group vitamins. In coinoculation with Rhizobium leguminosarum bv. trifolii strain 24.1, strain 267 promoted clover growth and enhanced symbiotic nitrogen fixation under controlled conditions. To better understand the beneficial effect of P. fluorescens 267 on clover inoculated with rhizobia, the colonization of clover roots by mTn5-gusA marked bacteria was studied in single and mixed infections under controlled conditions. Histochemical assays combined with light and electron microscopy showed that P. fluorescens 267.4 (i) efficiently colonized clover root surface; (ii) was heterogeneously distributed along the roots without the preference to defined root zone; (iii) formed microcolonies on the surface of clover root epidermis; (iv) penetrated the first layer of the primary root cortex parenchyma and (v) colonized endophytically the inner root tissues of clover.  相似文献   
4.
Field experiments were conducted in 2004 and 2005 to determine the effects of seed treatment with Rhizobium leguminosarum bv. viceae on damping‐off, seedling height, root nodule mass, root biomass, shoot biomass and seed yield of pea and lentil in a field naturally infested with Pythium spp. Compared with the untreated controls, treatment of pea seeds with R. leguminosarum bv. viceae strains R12, R20 or R21 significantly (P < 0.05) reduced incidence of damping‐off, promoted seedling growth and increased root nodule mass, root biomass and shoot biomass. Seed treatments with R12 or R21 also resulted in a significant (P < 0.05) increase in seed yield of pea. The strain R21 was most effective among the four strains of R. leguminosarum bv. viceae tested in peas. Although, the level of disease control by strain R21 was similar to seed treatment with the fungicide ThiramTM, R21 was more effective in enhancing root nodule production and promoting plant growth. For lentil, treatment of seeds with R. leguminosarum bv. viceae strains R12 or R21 significantly (P < 0.05) reduced incidence of damping‐off compared with the untreated control. All of the four strains of R. leguminosarum bv. viceae tested increased lentil seedling height, root nodule mass and shoot biomass, and all except R20 increased root biomass. Seed yield was higher for the treatments of R12 and R21. The strain R12 was most effective among the four strains of R. leguminosarum bv. viceae tested in lentil. Although, strain R12 was as effective as ThiramTM for control of damping‐off of lentil, it was more effective than ThiramTM for the production of root nodules and promotion of plant growth. The study concludes that seed treatment with R. leguminosarum bv. viceae is effective in control of Pythium damping‐off of pea and lentil and that the efficacy of control is strain specific, strain R21 for control of the disease on pea and strain R12 for control of the disease on lentil.  相似文献   
5.
6.
Genetic stability in rhizobia in the field   总被引:2,自引:0,他引:2  
Genetic instability within strains of rhizobia maintained on laboratory media is well recognized, although rarely has the mutation been characterized. Variability within a strain introduced into the field is very difficult to recognise due to poor understanding of naturally-occurring populations of rhizobia. We have examined populations of Rhizobium leguminosarum bv. trifolii from both laboratory cultures and field populations and found significant variation in symbiotic effectiveness within both. In Australia, the only significant introduction of Bradyrhizobium japonicum has been strain CB1809 (=USDA136b). Symbiotic tests on field reisolates obtained by plant entrapment indicate little or no change in symbiotic effectiveness up to nine years after introduction. The RFLP pattern, using the RS probe (Hahn and Hennecke, 1987a) was unchanged but marked differences in serological characters were observed.  相似文献   
7.
Summary DNA fragments carrying the recA genes of Rhizobium meliloti and Rhizobium leguminosarum biovar viciae were isolated by complementing a UV-sensitive recA Escherichia coli strain. Sequence analysis revealed that the coding region of the R. meliloti recA gene consists of 1044 by coding for 348 amino acids whereas the coding region of the R. leguminosarum bv. viciae recA gene has 1053 bp specifying 351 amino acids. The R. meliloti and R. leguminosarum bv. viciae recA genes show 84.8% homology at the DNA sequence level and of 90.1% at the amino acid sequence level. recA mutant strains of both Rhizobium species were constructed by inserting a gentamicin resistance cassette into the respective recA gene. The resulting recA mutants exhibited an increased sensitivity to UV irradiation, were impaired in their ability to perform homologous recombination and showed a slightly reduced growth rate when compared with the respective wild-type strains. The Rhizobium recA strains did not have altered symbiotic nitrogen fixation capacity. Therefore, they represent ideal candidates for release experiments with impaired strains.The accession numbers: X59956 R. LEGUMINOSARUM REC A ALAS-DNA; X59957 R. MELITOTI REC A ALAS-DNA  相似文献   
8.
9.
Abstract The kinetic analysis of citrate uptake in growing cells of Lactococcus lactis subsp. lactis biovar. diacetylactis identified a proton-dependent transport and suggested the divalent anionic species as the form of citrate transported across cell membranes. The reaction followed Michaelis-Menten kinetics for a two-substrate reaction. The limiting steps were the formation of the ternary complex and the rate of transport. Temperature modified the activity of the permease, increasing the uptake rate.  相似文献   
10.
BacteriainthegeneraofRhizobium,Bradyrhizobium,AzorhizobiumandSinorhizobiumelicitrootorstemnodulesontheirspecifichostplantsandfixatmosphericnitrogentherein.Nodulationgenes(nod,nolandnoe)playimportantrolesinthesuccessfulestablishmentofthesymbiosis,yetmost…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号