首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2006年   1篇
排序方式: 共有1条查询结果,搜索用时 138 毫秒
1
1.
AIMS: Bromoxynil degradation by soil micro-organisms has been shown to be co-oxidative in character. In this study, we investigate both the impact of the application of increasing bromoxynil concentrations on soil-derived bacterial communities and how these changes are reflected in the degradation of the compound. Our aim was to test the hypothesis that the addition of bromoxynil to a soil-derived bacterial community, and the availability of a readily utilizable carbon source would have an impact on bromoxynil degradation, and that would be reflected in the bacteria present in the soil community. METHODS AND RESULTS: Degradation of bromoxynil was observed in soil-derived communities containing 15 mg l(-1), but not 50 mg l(-1) of the compound, unless glucose was added. This suggests that the addition of carbon stimulates co-oxidative bromoxynil degradation by the members of the bacterial community. Measurable changes in the bacterial community indicated that the addition of bromoxynil led to deterministic selection on the bacterial population, i.e. the communities observed arise through the selection of specific micro-organisms that are best adapted to the conditions in the soil. The addition of bromoxynil was also shown to have a negative impact on the presence of alpha and gamma-proteobacteria in the soil community. CONCLUSION: Bromoxynil degradation is significantly inhibited in bacterial soil communities in the absence of readily accessible carbon. The application of bromoxynil appears to exert deterministic selection on the bacterial community. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the effects of increasing bromoxynil concentrations on a model bacterial population derived from soil. Soil communities show qualitative and quantitative differences to bromoxynil application depending on the availability of organic carbon. These findings might have implications for the persistence of bromoxynil in agricultural soils.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号