首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   669篇
  免费   1篇
  国内免费   11篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   4篇
  2019年   16篇
  2018年   9篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   54篇
  2013年   56篇
  2012年   36篇
  2011年   76篇
  2010年   43篇
  2009年   50篇
  2008年   32篇
  2007年   56篇
  2006年   36篇
  2005年   42篇
  2004年   29篇
  2003年   20篇
  2002年   16篇
  1998年   9篇
  1997年   9篇
  1996年   11篇
  1995年   3篇
  1992年   1篇
  1989年   2篇
  1985年   6篇
  1984年   8篇
  1983年   2篇
  1982年   7篇
  1981年   4篇
  1980年   6篇
  1979年   4篇
  1977年   3篇
  1975年   1篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
排序方式: 共有681条查询结果,搜索用时 15 毫秒
1.
It has been known for some time that pokeweed antiviral protein acts by enzymatically inhibiting protein synthesis on eucaryotic ribosome systems. The site of this action is known to be the ribosome itself. In this paper we show that the pokeweed antiviral protein reaction against ribosomes is a strong function of salt concentrations, where 160 mM K+ and 3 mM Mg2+ retards the reaction, while 20 mM K+ and 2 mM Mg2+ allows maximum reaction rate. It is also shown, however, that an unidentified protein in the postribosomal supernatant solution, together with ATP, allows the ribosome to be attacked even in the presence of high salt. Kinetic analysis of the antiviral protein reaction has been carried out under both sets of conditions, and reveals that the turnover number for the enzyme is about 300–400 mol/mol per min. in each case. The Km for ribosomes is 1 μM in the presence of low salt and 0.2 μM at higher salt in the presence of postribosomal supernatant factors plus ATP. The antiviral protein reaction is also shown to be pH dependent and is controlled by a residue with pKa value of approx. 7.0, apparently a histidine. Stoichiometric reaction of the enzyme with iodoacetamide results in a significant loss of antiribosomal activity.  相似文献   
2.
Within two models of steroid-modulated behavior, sodium appetite and sexual receptivity, novel mechanisms of steroid action have emerged. These include interactions between different types of steroid receptors, plasticity of synapses, activation of unliganded steroid receptors, and rapid effects of steroids. These mechanisms highlight the diversity of steroid action in the central nervous system.  相似文献   
3.
In rat liver membranes cholera toxin ADP-ribosylated two polypeptides (Mr 42000 and 47000) in the regulatory component of adenylate cyclase. L-arginine methyl ester specifically inhibited both the activation of adenylate cyclase and ADP-ribosylation by cholera toxin, suggesting that cholera toxin modified arginine, or arginine-like, residues. A hydrolysis-resistant analogue of GTP (β, γ-imidoguanosine 5′-triphosphate, p(NH)ppG) bound to the regulatory protein in an essentially irreversible manner. Pretreatment with the analogue failed to inhibit the labelling of polypeptides by cholera toxin showing that the sites for ADP-ribosylation were different from those at which guanyl nucleotides were bound.  相似文献   
4.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1)Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5)K+ + Na+ + ATP, Na+ + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (K0.5s) were 3 mM, 0.13 mM and 4μM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i.e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)-ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 · nucleotide and EP), which all have different conformations.  相似文献   
5.
6.
7.
Blood from a splenectomized calf infected with Babesia major was divided into 20 ml aliquots which were γ-irradiated at doses of 0, 23.3, 27.3, 31.4, 35.4 and 39.5 krad and then inoculated into groups of three intact calves. Animals receiving non-irradiated blood had typical mild B. major reactions, but those receiving blood irradiated at 23.3, 27.3 and 31.4 krad and 2 of 3 receiving blood irradiated at 35.4 krad had minimal reactions. The remaining 4 animals had no detectable parasitaemic reactions. When the calves were challenged with a similar number (6.0 × 109) of homologous parasites, they were all immune with the exception of the 4 animals which had not reacted initially. The immune status of individual cattle was reflected accurately in the results of the micro-ELISA test, which detected a significant rise in serum antibody titre of the 4 susceptible animals 7 days after challenge.  相似文献   
8.
Eighteen substituted thiophene and benzothiophene derivatives were studied for their effects on peroxisome proliferator-activated receptor γ (PPARγ) in HepG2 cells. Three derivatives (compounds 5, 120.97%; 15, 102.14%; and 17, 113.82%) were found to transactivate PPARγ in vitro. By comparison, the positive control rosiglitazone (Ros) transactivated PPARγ by 311.53%. The three compounds were studied for their effects on glucose metabolism in vivo in KK/Ay diabetic mice. In vivo, the 2-(β-carbonyl/sulfonyl) butyryl-thiophene compounds 5 and 15 significantly decreased blood glucose levels (compounds 5, to?<?15.6?mmol/L; 15, to?<?10?mmol/L), improved glucose tolerance, improved impaired pancreatic islet β-cells, and lowered serum insulin levels.  相似文献   
9.
Lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), the most prominent lysoglycerophospholipids, are emerging as a novel class of inflammatory lipids, joining thromboxanes, leukotrienes and prostaglandins with which they share metabolic pathways and regulatory mechanisms. Enzymes that participate in LPC and LPA metabolism, such as the phospholipase A2 superfamily (PLA2) and autotaxin (ATX, ENPP2), play central roles in regulating LPC and LPA levels and consequently their actions. LPC/LPA biosynthetic pathways will be briefly presented and LPC/LPA signaling properties and their possible functions in the regulation of the immune system and chronic inflammation will be reviewed. Furthermore, implications of exacerbated LPC and/or LPA signaling in the context of chronic inflammatory diseases, namely rheumatoid arthritis, multiple sclerosis, pulmonary fibrosis and hepatitis, will be discussed. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
10.
Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号