首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   2篇
  国内免费   11篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   16篇
  2012年   5篇
  2011年   7篇
  2010年   2篇
  2009年   7篇
  2008年   4篇
  2007年   12篇
  2006年   6篇
  2005年   6篇
  2004年   10篇
  2003年   10篇
  2002年   6篇
  2001年   6篇
  2000年   2篇
  1999年   8篇
  1998年   12篇
  1997年   11篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1982年   1篇
排序方式: 共有191条查询结果,搜索用时 187 毫秒
1.
Soil contamination by toxic trace metal elements, like barium (Ba), may stimulate various undesirable changes in the metabolic activity of plants. The plant responses are fast and with, direct or indirect, generation of reactive oxygen species (ROS). To cope with the stress imposed by the ROS production, plants developed a dual cellular system composed of enzymatic and non-enzymatic players that convert ROS, and their by-products, into stable nontoxic molecules. To assess the Ba stress response of two Brassicaceae species (Brassica juncea, a glycophyte, and Cakile maritime, a halophyte), plants were exposure to different Ba concentrations (0, 100, 200, 300 and 500 μM). The plants response was evaluated through their morphology and development, the determination of plant leaves antioxidant enzymatic activities and by the production of plants secondary metabolites. Results indicated that the two Brassicaceae species have the ability to survive in an environment containing Ba (even at 500 μM). The biomass production of C. maritima was slightly affected whereas an increase in biomass B. juncea was noticed. The stress imposed by Ba activated the antioxidant defense system in the two species, noticed by the changes in the leaves activity of catalase (CAT), ascorbate peroxidase (APX) and guaicol peroxidase (GPX), and of the secondary metabolites, through the production of total phenols and flavonoids. The enzymatic response was not similar within the two plant species: CAT and APX seem to have a more important role against the oxidative stress in C. maritima while in B. juncea is GPX. Overall, total phenols and flavonoids production was more significant in the plants aerial part than in the roots, of the both species. Although the two Brassicaceae species response was different, in both plants catalytic and non-catalytic transformation of ROS occurs, and both were able to overcome the Ba toxicity and prevent the cell damage.  相似文献   
2.
Fruit extract of Solanum xanthocarpum was evaluated for its toxicity against Alternaria brassicae, the causal agent of Alternaria blight of Indian mustard [Brassica juncea (L.) Czern. &; Coss]. The mass obtained after vacuum drying of the crude methanolic extract was utilised for further sequential fractionation using n-hexane, ethyl acetate, n-butanol and methanol. Among the crude and different fractions tested, methanolic fraction was most effective with a minimum inhibitory concentration (MIC) of 62.5 μg/ml. The methanolic fraction was further fractionated using open column liquid chromatography into five subfractions (I–V) to identify the antifungal bioactive compounds. Among the five subfractions (SFs) tested SF IV was most effective at inhibiting A. brassicae conidial germination and thereby inhibited lesion development of Alternaria blight at a concentration of 15.625 μg/ml or higher. Furthermore, bioautography of SF IV with Alternaria alternata and diagnosis with Dragendorff reagent indicated that SF IV contains a mixture of bioactive alkaloids, namely a1 (Rf = 0.12) and a2 (Rf = 0.22). The potential of using S. xanthocarpum as a resource for the development of biofungicides is discussed.  相似文献   
3.
The development, survival and reproduction of the cabbage aphid, Brevicoryne brassicae (L.) were evaluated at three constant temperatures (20, 25 and 30°C) on cabbage, cauliflower, red cabbage, turnip and radish. The development periods of immature stages ranged from 10.7 d at 20°C to 7.60 d at 30°C for red cabbage. Total percentages of survivorship of immature stages varied from 39.40 and 82.50 within the temperature range of 25–30°C on radish. The average progeny per female was 31.15, 28.95 and 23.77 at 20, 25 and 30°C on cabbage.  相似文献   
4.
Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg?1 of NiCl2, 100 mg kg?1 of CdCl2, and 150 mg kg?1 of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction.  相似文献   
5.
RNA editing for the mitochondrlal ATP9 gene of encoding regions has been observed in both cytoplasmic malesterile and maintainer lines of stem mustard, where its editing capacity varied spatially and temporally in the cytoplasmic male sterility (CMS) line. There were four RNA editing sites for the mitochondrial ATP9 gene according to Its normal editing sites in mustard, of which three sites occurred as C-to-U changes and one as a U-to-C change. As a result, the hydrophobicity of deduced ATP9 protein was reduced due to the conversions at its 17th, 45th and 64th positions. Meanwhile, the conservation of deduced ATP9 protein was enhanced by changes at the 56th position. Loss of a specific editing site for ATP9 was observed in juvenile roots, senile roots, senile leaves and floret buds of the CMS line. Comparatively, complete RNA editing for ATP9 gene was retained in juvenile roots, juvenile leaves and floret buds of its maintainer line; however, the loss of a specific editing site for ATP9 gene occurred at senile roots and senile leaves in its maintainer line. These observations allow us to produce a hypothesis that the dysfunction of a specific mitochondrial gene arising from RNA editing could probably be a factor triggering CMS and organ senescence through unknown cross-talk pathways during development.  相似文献   
6.
7.
Uptake of lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) as +2 ions by excised roots of Indian mustard was demonstrated to be an ion-exchange process with existing Ca or protons released to the solution. This initial reaction at the root-aqueous interface is important in the uptake of these toxic metals from contaminated soil. Ethylene diamine tetraacetic acid (EDTA)-amended soil for phytoremediation has Pb in anionic form as [Pb-EDTA]2-, which was not taken up by excised roots. In nonliving B. juncea, Pb2+ was translocated from a solution through a cut stem to petiole and leaves much more quickly than anionic [Pb-EDTA]2-. However, in living plants [Pb-EDTA]2- was more quickly translocated from a solution through roots and petiole to leaves than Pb2+. The final amount of uptake on roots of the living plants was the same for both forms of Pb. The present results are important toward understanding the mechanism of phytoremediation of toxic metal-contaminated soil for two reasons: 1) the initial process, uptake of metal ions by roots, was shown to occur by cation exchange and 2) since [Pb-EDTA]2- was not sorbed by excised roots, other factors such as transpiration and active transport are important in applications using EDTA-amended soils contaminated by Pb.  相似文献   
8.
Polar auxin transport plays a divergent role in plant growth and developmental processes including root and embryo development, vascular pattern formation and cell elongation. Recently isolated Arabidopsis pin gene family was believed to encode a component of auxin efflux carrier (G(?)lweiler et al, 1998). Based on the Arabidopsis pin1 sequence we have isolated a Brassica juncea cDNA (designated Bjpin1), which encoded a 70-kDa putative auxin efflux carrier. Deduced BjPIN1 shared 65% identities at protein level with AtPINl and was highly homologous to other putative PIN proteins of Arabidopsis (with highest homology to AtPIN3). Hydrophobic analysis showed similar structures between BjPINl and AtPIN proteins. Presence of 6 exons (varying in size between 65 bp and 1229 bp) and 5 introns (sizes between 89 bp and 463 bp) in the genomic fragment was revealed by comparing the genomic and cDNA sequences. Northern blot analysis indicated that Bjpin1 was expressed in most of the tissues tested, with a relatively h  相似文献   
9.
 A cytoplasmic male-sterility system has been developed in mustard (Brassica juncea) following repeated backcrossings of the somatic hybrid Moricandia arvensis (2n=28, MM)+B. juncea (2n=36, AABB), carrying mitochondria and chloroplasts from M. arvensis, to Brassica juncea. Cytoplasmic male-sterile (CMS) plants are similar to normal B. juncea; however, the leaves exhibit severe chlorosis resulting in delayed flowering. Flowers are normal with slender, non-dehiscent anthers and excellent nectaries. CMS plants show regular meiosis with pollen degeneration occurring during microsporogenesis. Female fertility was normal. Genetic information for fertility restoration was introgressed following the development of a M. arvensis monosomic addition line on CMS B. juncea. The additional chromosome paired allosyndetically with one of the B. juncea bivalents and allowed introgression. The putative restorer plant also exhibited severe chlorosis similar to CMS plants but possessed 89% and 73% pollen and seed fertility, respectively, which subsequently increased to 96% and 87% in the selfed progeny. The progeny of the cross of CMS line with the restorer line MJR-15, segregated into 1 fertile : 1 sterile. The CMS (Moricandia) B. juncea, the restorer (MJR-15), and fertility restored F1 plants possess similar cytoplasmic organellar genomes as revealed by ‘Southern’ analysis. Received: 17 September 1997 / Accepted: 18 February 1998  相似文献   
10.
Aims: To evaluate the effect of Acacia auriculaeformis‐associated fungi on the growth of mustard [Brassica juncea (L.) Coss. var. foliosa Bailey] in Cd‐ and Ni‐contaminated soils and design novel plant–fungi associations for bioremediation purpose. Methods and Results: Endophytic Trichoderma H8 and rhizosphere Aspergillus G16 were applied for rhizoremediation of Cd‐, Ni‐, and Cd–Ni combination‐contaminated soils through association with B. juncea (L.) Coss. var. foliosa. Compared with the noninoculated control plants, inoculation with Trichoderma H8 produced 109%, 41% and 167% more fresh weight (FW) plant yields in the Cd‐, Ni‐, and Cd–Ni‐contaminated soils, respectively (P < 0·05). Similarly, plants inoculated with Aspergillus G16 produced 109%, 47% and 44% more FW plant yields in these contaminated soils, respectively. Plants co‐inoculated with these two strains produced 118%, 100% and 178% more FW plant yields, respectively. The inoculations also increased the translocation factors and metal bioconcentration factors. Conclusions: The efficiency of phytoextraction for B. juncea (L.) Coss. var. foliosa was enhanced after inoculating with Acacia‐associated fungi. Significance and Impact of the study: The use of plant–fungi association may be a promising strategy to remediate metal‐contaminated soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号