首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2015年   1篇
  2011年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Autophagy is a cellular process that controls and executes the turnover of dysfunctional organelles and misfolded or abnormally aggregated proteins. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) activates the initiation of autophagy. Autophagosomes migrate along acetylated microtubules to fuse with lysosomes to execute the degradation of the engulfed substrates that usually bind with sequestosome 1 (SQSTM1, p62). Microtubule-associated protein 1 light chain 3 (LC3) traces the autophagy process by converting from the LC3-I to the LC3-II isoform and serves as a major marker of autophagy flux. Potassium bisperoxo(1,10-phenanthroline)oxovanadate (bpV(phen)) is an insulin mimic and a PTEN inhibitor and has the potential to treat different diseases. Here we show that bpV(phen) enhances the ubiquitination of p62, reduces the stability of p62, disrupts the interaction between p62 and histone deacetylase 6 (HDAC6), activates the deacetylase activity of HDAC6 on α-tubulin, and impairs stable acetylated microtubules. Microtubular destabilization leads to the blockade of autophagosome-lysosome fusion and accumulation of autophagosomes. Autophagy defects lead to oxidative stress and lysosomal rupture, which trigger different types of cell death, including apoptosis and pyroptosis. The consistent results from multiple systems, including mouse and different types of mammalian cells, are different from the predicted function of bpV(phen) as a PTEN inhibitor to activate autophagy flux. In addition, levels of p62 are reduced but not elevated when autophagosomal degradation is blocked, revealing a novel function of p62 in autophagy regulation. Therefore, it is necessary to pay attention to the roles of bpV(phen) in autophagy, apoptosis, and pyroptosis when it is developed as a drug.  相似文献   
2.
The cyclin-dependant kinase Cdk2 is compartmentalized in endosomes but its role is poorly understood. Here we show that Cdk2 present in hepatic endosome fractions is strictly located in a Triton X-100-resistant environment. The endosomal Cdk2 was found to be associated with the protein tyrosine phosphatase SHP-1, a regulator of insulin clearance, and the actin anchor β-catenin, a known substrate for both Cdk2 and SHP-1. In the plasma membranes and endosome fractions, β-catenin is associated with CEACAM1, also known as regulator of insulin clearance. We show that β-catenin, not CEACAM1, is a substrate for Cdk2. Partial down-modulation of Cdk2 in HEK293 cells increased the rate of insulin internalization. These findings reveal that Cdk2 functions, at least in part, via a Cdk2/SHP-1/β-catenin/CEACAM1 axis, and show for the first time that Cdk2 has the capacity to regulate insulin internalization.  相似文献   
3.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. Approximately 85% of GISTs harbor activating mutations of the KIT or PDGFRA receptor tyrosine kinases. PTEN and SHIP2 are major phosphatases that dephosphorylate PI(3,4,5)P3, one of the intracellular signal pathways downstream of KIT. PTEN is an important tumor suppressor, whereas the involvement of SHIP2 in cancer has been proposed based essentially on cell line studies. We have used a mouse model of GIST, i.e. KitK641E knock-in mice, resulting in the substitution of a Lys by Glu at position 641 of Kit. In homozygous KitK641E mice, PTEN-immunoreactivity (ir) in antrum was found in the hyperplastic Kit-ir layer. The same localization was found for SHIP2. Western blot analysis in antrum showed a large increase in PTEN expression in KitK641E homozygous mice as compared to wild type. In contrast, SHIP2 expression was not affected between the two genotypes. Erk1, but not PKB, phosphorylation appears to be upregulated in KitK641E homozygous mice. In the human GIST882 imatinib sensitive cell line, both PTEN and SHIP2 were expressed and showed, in part, a nuclear localization. The upregulation of PTEN in antrum in KitK641E mice might serve as a feedback mechanism to limit PI 3-kinase activation downstream of Kit in a context of oncogenic mutation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号