首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2018年   1篇
  2014年   1篇
  2010年   2篇
  2009年   1篇
  1996年   1篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 156 毫秒
1
1.
An effective groundwater monitoring system can be implemented by the combined utilization of cone penetrometer (CPT), HydroPunch® sampling, and borehole geophysical methods. The combined techniques provide a cost‐effective method for the design of a groundwater monitoring system for geologists or hydrogeologists assessing a site. With the relatively high costs associated with determining groundwater quality for site assessments, coupled with regulatory agency compliance, these combined methods can provide an effective edge in an increasingly competitive environmental industry. CPT combined with HydroPunch sampling can delineate the horizontal and vertical extent and concentration of a contaminant plume, define the extent and thickness of a free product plume, define soil and aquifer characteristics, and aid in the proper selection of well location and screen placement. The use of borehole geophysics further enhances the interpretation provided from the CPT. The interpretation of borehole geophysics provides additional information about the deposition regime of the area of investigation and a more detailed investigation of the stratigraphy. The CPT and HydroPunch can be used in unconsolidated sediments, and HydroPunch sampling can be combined with a hollow‐stem auger system. Borehole geophysics can be run in almost any environment. CPT and borehole geophysics provide information on specific lithologic characteristics necessary to obtain a groundwater sample from vertically separated aquifers. The HydroPunch can obtain a discrete, chemically representative groundwater sample from the targeted aquifer. CPT and borehole geophysics can also be used to determine lithology and for correlation of equivalent stratas from one borehole or well to the next. Borehole geophysical interpretation also provides a means of determining not only the stratigraphy and lithology but also the aquifer parameters and the type of fluids in the aquifer. Hydrogeologic and geologic data obtained from using these three methods can be employed to maximize the cost‐effectiveness and design efficiency of a groundwater monitoring system. Proper location of wells and screened interval placements are determined by a coherent design process rather than by random chance. Two studies demonstrating the combined applications of CPT, HydroPunch, and borehole geophysics for the design and placement of groundwater monitoring wells are presented in the following discussion.  相似文献   
2.
A typical upland soil catena afforested with Sitka spruce (Picea sitchensis (Bong.) Carr.) was chosen to examine the localised effect of trees on soil permeability. A borehole permeameter was used to measure soil permeability at 0.2 m and approximately 2 m distance from the stem of 20 trees at a fixed measurement depth of 0.25 to 0.45 m. In the case of the near-tree measurements, this corresponded to soil beneath the main root plate of each conifer. Two principal elements of the soil catena: the ferric podzol of the mid-slope and histosol soil of the foot-slope were investigated.The preliminary data set shows that within the ferric podzol element, the permeability of the soil beneath individual conifers was a factor of 5.4 less than that of the adjacent soil. In contrast, within the histosol sub-tree permeabilities could not be distinguished from those of soil 2 m away from each tree. The decrease in sub-tree permeability within the podzol may be caused by sensitivity of the Bsl horizon to consolidation by tree weight or by enhanced illuviation resulting from changes in local soil chemistry. The histosol may be less sensitive to such processes. The results of a consolidation test applied to the Rawls and Brakensiek model of soil permeability supported the possible role of consolidation in the reduction of soil permeability beneath conifers in podzolic soil. Additional data on soil bulk density, porosity and texture are required to corroborate either the consolidation or illuviation hypotheses. As the Bsl horizon of ferric podzol soil is typically slowly permeable, a further decline may (i) restrict root development and thus, increase windthrow hazard, and (ii) increase the lateral flow of water within podzolic Eag horizons and thus affect stream acidification. Deep ploughing of a site prior to afforestation may mitigate such impacts.  相似文献   
3.
Cancer and non-cancer risk assessment from exposure to As, Cd, and Cu by resident adults and children from different water sources in Obuasi Municipality, Ghana, were measured in this study in accordance with the U.S. Environmental Protection Agency's (USEPA's) Human Health Risk Assessment guidelines. The results of cancer health risk for resident adults in Obuasi exposed to As in their tap water for both Central Tendency Exposure (CTE) and Reasonable Maximum Exposure (RME) parameters, respectively, are 6.6 × 10?4 and 5.5 × 10?6. For resident children in Odumasi, we obtained 4.7 × 10?1 (CTE) and 6.7 × 10?1 (RME). The results of the study obtained in most cases were found to exceed the USEPA's acceptable cancer risk range of 1 × 10?6 to 1 × 10?4 (i.e., 1 case of cancer out of 1,000,000 people to 1 case of cancer out of 10,000 people). Similarly, the results of the non-cancer human health risk for both resident adults and children were also found in most cases to be greater than the USEPA's acceptable non-cancer human health hazard index of 1.  相似文献   
4.
The quality of water sources and its potential health implications to adults and children populations of respective major communities in Northern Cross-River was assessed. Water samples (n = 10/water source/site) were collected from three (Okpoma, Okuku and Ugaga) communities and heavy metal concentrations (Lead (Pb), Cadmium (Cd), Chromium (Cr), Manganese (Mn), Nickel (Ni), Copper (Cu), Cobalt (Co), and Zinc (Zn)) were evaluated using Atomic Absorption Spectrometer (AAS). Overall, Pb, Cd, Ni, and Co were higher than drinking water guidelines, while only Cr, Mn, Cu, and Zn were within the permissible limits. The estimated average daily intake (EADI) and target hazard quotient (THQ) were used to determine risk implications for adult and children consumer populations. The EADI for Pb in adults for borehole water, Pb and Cr by child consumer population for borehole and shallow well water exceeded the reference dose (RfD) by USEPA. The THQ for adult population were >1 for Pb in borehole water and >1 for Pb and Cr across all sites for the child consumer population. Overall, our findings indicate toxicity and higher hazard risk for both adult (Pb) and children (Pb and Cr) populations that source drinking water from borehole and shallow well water in these communities.  相似文献   
5.
A brachiopod fauna from the uppermost part of the Tournaisian Tournai Formation (Belgium) contains an undetermined species of Crurithyris (Spiriferida, Ambocoeliidae), which displays numerous bored shells. About 8% of the 432 specimens with conjoined valves display single, small (≤ 1 mm) boreholes, which are smooth-sided, cylindrical or weakly conical, circular to slightly elliptical in plan view, perpendicular to the shell surface and generally complete. Of the 35 bored articulated specimens, 27 were drilled on the ventral valve. Most of the boreholes are located in the posterior half of the shell, and no case of edge-drilling has been observed. The boreholes were drilled by a predator, or possibly a parasite, which selected individuals greater than 2.5 mm long. Crurithyris sp. may have represented an attractive (in terms of energy cost) and easy target for a small-sized predator because of its thin shell and ornament of minute spines.  相似文献   
6.
7.
The recent invasion of a naticid predator (Laguncula pulchella) and associated changes in the death assemblages of bivalve prey (Ruditapes philippinarum) provide a baseline for interpreting predator–prey interactions in the fossil record. This article presents quantitative data on size‐frequency distributions (SFDs) of living and death assemblages, prey size selectivity and drillhole site selectivity from the Tona Coast, northern Japan. Before the appearance of the predator, the SFD of the death assemblage exhibited a right‐skewed platykurtic distribution, and there were very few predatory drillholes. Once the predator appeared, frequencies of predatory drillholes increased, particularly in the smallest size class (2–10 mm shell length). Furthermore, juvenile peaks in the SFDs of death assemblages sharpened, and thus, SFDs exhibited strongly right‐skewed leptokurtic distributions. These changes suggest that intense naticid predation precluded juvenile clams from growing to adulthood, and thus, many dead shells of juvenile clams were introduced into the sediment. The changes in SFDs may also indicate intensification of predation pressure in the fossil record. No temporal shifts in prey size selectivity and drillhole site selectivity were noted, despite substantial changes in the demographics of Ruditapes philippinarum. This suggests that lack of specific size classes of preferred prey species is unlikely to be a primary factor accounting for size mismatches between predator and prey, because, in such situations, naticid predators probably attack other prey species. Therefore, such a factor is unlikely to primarily explain the less stereotypical predatory behaviour (i.e. low prey size selectivity and low drillhole site selectivity), which has been frequently recognized in fossil assemblages. Such less stereotypical predatory behaviour in fossil assemblages is likely to be explained by other factors, such as the existence of multiple predator taxa and lack of specific size classes of all available prey.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号