首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   91篇
  国内免费   12篇
  580篇
  2024年   1篇
  2023年   11篇
  2022年   4篇
  2021年   17篇
  2020年   36篇
  2019年   25篇
  2018年   23篇
  2017年   32篇
  2016年   22篇
  2015年   29篇
  2014年   23篇
  2013年   27篇
  2012年   15篇
  2011年   21篇
  2010年   17篇
  2009年   25篇
  2008年   42篇
  2007年   24篇
  2006年   21篇
  2005年   17篇
  2004年   20篇
  2003年   20篇
  2002年   17篇
  2001年   18篇
  2000年   14篇
  1999年   15篇
  1998年   11篇
  1997年   9篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有580条查询结果,搜索用时 0 毫秒
1.
2.
3.
《Plant Ecology & Diversity》2013,6(2-3):227-241
Background: Although forest floor forms a large biomass pool in forested peatlands, little is known about its role in ecosystem carbon (C) dynamics.

Aim: We aimed to quantify forest floor photosynthesis (P FF) and respiration (R FF) as a part of overall C dynamics in a drained peatland forest in southern Finland.

Methods: We measured net forest floor CO2 exchange with closed chambers and reconstructed seasonal CO2 exchange in the prevailing plant communities.

Results: The vegetation was a mosaic of plant communities that differed in CO2 exchange dynamics. The reconstructed growing season P FF was highest in the Sphagnum community and lowest in the feather moss communities. On the contrary, R FF was highest in the feather moss communities and lowest in the Sphagnum community. CO2 assimilated by the forest floor was 20–30% of the total CO2 assimilated by the forest. The forest floor was a net CO2 source to the atmosphere, because respiration from ground vegetation, tree roots and decomposition of soil organic matter exceeded the photosynthesis of ground vegetation.

Conclusions: Tree stand dominates C fluxes in drained peatland forests. However, forest floor vegetation can have a noticeable role in the C cycle of peatlands drained for forestry. Similarly to natural mires, Sphagnum moss-dominated communities were the most efficient assimilators of C.  相似文献   
4.
The regulation of surface water pCO2 was studied in a set of 33 unproductive boreal lakes of different humic content, situated along a latitudinal gradient (57°N to 64°N) in Sweden. The lakes were sampled four times during one year, and analyzed on a wide variety of water chemistry parameters. With only one exception, all lakes were supersaturated with CO2 with respect to the atmosphere at all sampling occasions. pCO2 was closely related to the DOC concentration in lakes, which in turn was mainly regulated by catchment characteristics. This pattern was similar along the latitudinal gradient and at different seasons of the year, indicating that it is valid for a variety of climatic conditions within the boreal forest zone. We suggest that landscape characteristics determine the accumulation and subsequent supply of allochthonous organic matter from boreal catchments to lakes, which in turn results in boreal lakes becoming net sources of atmospheric CO2.  相似文献   
5.
北方森林土壤呼吸和木质残体分解释放出的CO2通量   总被引:13,自引:3,他引:10  
王传宽  杨金艳 《生态学报》2005,25(3):633-638
北方森林因其面积大、土壤碳储量高以及对全球暖化响应敏感而在全球碳平衡和气候系统中起着至关重要的作用。土壤呼吸和木质残体分解释放出的 CO2 通量是北方森林生态系统输入大气圈的最主要的碳源。量化这个通量并深刻理解其中的机理过程 ,是评价和预测北方森林在全球变化中的作用必不可少的内容。综述了北方森林生态系统土壤呼吸和木质残体分解释放出的 CO2 通量随生态系统类型及环境条件而变化的一般格局以及自养呼吸和异氧呼吸在土壤表面 CO2 通量中的相对贡献 ;分析了影响北方森林土壤呼吸的主要生物物理因子 ;讨论了该领域研究存在的问题和今后的研究方向 ;并强调木质残体分解释放出的 CO2 通量虽然在以往的森林生态系统碳平衡研究中常被忽略 ,但在火灾频繁的北方森林中不容忽视  相似文献   
6.
Permafrost thaw resulting from climate warming may dramatically change the succession and carbon dynamics of northern ecosystems. To examine the joint effects of regional temperature and local species changes on peat accumulation following thaw, we studied peat accumulation across a regional gradient of mean annual temperature (MAT). We measured aboveground net primary production (AGNPP) and decomposition over 2 years for major functional groups and used these data to calculate a simple index of net annual aboveground peat accumulation. In addition, we collected cores from six adjacent frozen and thawed bog sites to document peat accumulation changes following thaw over the past 200 years. Aboveground biomass and decomposition were more strongly controlled by local succession than regional climate. AGNPP for some species differed between collapse scars and associated permafrost plateaus and was influenced by regional MAT. A few species, such as Picea mariana trees on frozen bogs and Sphagnum mosses in thawed bogs, sequestered a disproportionate amount of peat; in addition, changes in their abundance following thaw changed peat accumulation. 210Pb-dated cores indicated that peat accumulation doubles following thaw and that the accumulation rate is affected by historical changes in species during succession. Peat accumulation in boreal peatlands following thaw was controlled by a complex mix of local vegetation changes, regional climate, and history. These results suggest that northern ecosystems may show responses more complex than large releases of carbon during transient warming. Received 8 August 2000; accepted 12 January 2001.  相似文献   
7.
Given that they can burn for weeks or months, wildfires in temperate and boreal forests may become immense (eg., 100 – 104 km2). However, during the period within which a large fire is ‘active’, not all days experience weather that is conducive to fire spread; indeed most of the spread occurs on a small proportion (e.g., 1 – 15 days) of not necessarily consecutive days during the active period. This study examines and compares the Canada‐wide patterns in fire‐conducive weather (‘potential’ spread) and the spread that occurs on the ground (‘realized’ spread). Results show substantial variability in distributions of potential and realized spread days across Canada. Both potential and realized spread are higher in western than in eastern Canada; however, whereas potential spread generally decreases from south to north, there is no such pattern with realized spread. The realized‐to‐potential fire‐spread ratio is considerably higher in northern Canada than in the south, indicating that proportionally more fire‐conducive days translate into fire progression. An exploration of environmental correlates to spread show that there may be a few factors compensating for the lower potential spread in northern Canada: a greater proportion of coniferous (i.e., more flammable) vegetation, lesser human impacts (i.e., less fragmented landscapes), sufficient fire ignitions, and intense droughts. Because a linear relationship exists between the frequency distributions of potential spread days and realized spread days in a fire zone, it is possible to obtain one from the other using a simple conversion factor. Our methodology thus provides a means to estimate realized fire spread from weather‐based data in regions where fire databases are poor, which may improve our ability to predict future fire activity.  相似文献   
8.
Molecular ecology is poised to tackle a host of interesting questions in the coming years. The Arctic provides a unique and rapidly changing environment with a suite of emerging research needs that can be addressed through genetics and genomics. Here we highlight recent research on boreal and tundra ecosystems and put forth a series of questions related to plant and microbial responses to climate change that can benefit from technologies and analytical approaches contained within the molecular ecologist's toolbox. These questions include understanding (i) the mechanisms of plant acquisition and uptake of N in cold soils, (ii) how these processes are mediated by root traits, (iii) the role played by the plant microbiome in cycling C and nutrients within high‐latitude ecosystems and (iv) plant adaptation to extreme Arctic climates. We highlight how contributions can be made in these areas through studies that target model and nonmodel organisms and emphasize that the sequencing of the Populus and Salix genomes provides a valuable resource for scientific discoveries related to the plant microbiome and plant adaptation in the Arctic. Moreover, there exists an exciting role to play in model development, including incorporating genetic and evolutionary knowledge into ecosystem and Earth System Models. In this regard, the molecular ecologist provides a valuable perspective on plant genetics as a driver for community biodiversity, and how ecological and evolutionary forces govern community dynamics in a rapidly changing climate.  相似文献   
9.
The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall‐tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m?2 year?1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2‐eq m?2 year?1, thus providing a climate‐cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear‐cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall‐tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.  相似文献   
10.
Changing climate can modify predator–prey interactions and induce declines or local extinctions of species due to reductions in food availability. Species hoarding perishable food for overwinter survival, like predators, are predicted to be particularly susceptible to increasing temperatures. We analysed the influence of autumn and winter weather, and abundance of main prey (voles), on the food‐hoarding behaviour of a generalist predator, the Eurasian pygmy owl (Glaucidium passerinum), across 16 years in Finland. Fewer freeze–thaw events in early autumn delayed the initiation of food hoarding. Pygmy owls consumed more hoarded food with more frequent freeze–thaw events and deeper snow cover in autumn and in winter, and lower precipitation in winter. In autumn, the rotting of food hoards increased with precipitation. Hoards already present in early autumn were much more likely to rot than the ones initiated in late autumn. Rotten food hoards were used more in years of low food abundance than in years of high food abundance. Having rotten food hoards in autumn resulted in a lower future recapture probability of female owls. These results indicate that pygmy owls might be partly able to adapt to climate change by delaying food hoarding, but changes in the snow cover, precipitation and frequency of freeze–thaw events might impair their foraging and ultimately decrease local overwinter survival. Long‐term trends and future predictions, therefore, suggest that impacts of climate change on wintering food‐hoarding species could be substantial, because their ‘freezers’ may no longer work properly. Altered usability and poorer quality of hoarded food may further modify the foraging needs of food‐hoarding predators and thus their overall predation pressure on prey species. This raises concerns about the impacts of climate change on boreal food webs, in which ecological interactions have evolved under cold winter conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号