首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5291篇
  免费   473篇
  国内免费   150篇
  2024年   16篇
  2023年   114篇
  2022年   112篇
  2021年   253篇
  2020年   247篇
  2019年   314篇
  2018年   286篇
  2017年   188篇
  2016年   136篇
  2015年   198篇
  2014年   363篇
  2013年   455篇
  2012年   229篇
  2011年   255篇
  2010年   220篇
  2009年   209篇
  2008年   240篇
  2007年   238篇
  2006年   212篇
  2005年   175篇
  2004年   150篇
  2003年   138篇
  2002年   139篇
  2001年   108篇
  2000年   74篇
  1999年   73篇
  1998年   72篇
  1997年   81篇
  1996年   65篇
  1995年   47篇
  1994年   66篇
  1993年   54篇
  1992年   48篇
  1991年   49篇
  1990年   17篇
  1989年   29篇
  1988年   24篇
  1987年   16篇
  1986年   24篇
  1985年   32篇
  1984年   28篇
  1983年   19篇
  1982年   11篇
  1981年   9篇
  1980年   14篇
  1979年   16篇
  1978年   12篇
  1976年   9篇
  1974年   8篇
  1971年   5篇
排序方式: 共有5914条查询结果,搜索用时 31 毫秒
1.
《Cell reports》2020,30(6):1690-1701.e4
  1. Download : Download high-res image (107KB)
  2. Download : Download full-size image
  相似文献   
2.
Mercury (Hg) is a highly toxic element that causes bone defects and malformations. Structure and surface analyses using quantitative x-ray diffraction using the Rietveld method, High-Resolution Transmission Electron Microscopy and nanodiffraction analyses, and Fourier-Transformed Infrared spectroscopy showed that bone enriched naturally with Hg (≤ 2.3 %) contained Hg3PO4 [(Hg2)3(PO4)2] and HgO. Bone [mostly as apatite, verified as carboxyapatite Ca10(PO4)4(CO3)3(OH)2(s)] and cinnabar (HgS) dissolved releasing Hg+ (existing as dimer Hg22+) and PO43−, both of which became immobilized as (Hg2)3(PO4)2. Besides, released Hg2+ became oxidized to form HgO. The outcome of this work is novel, provided that only a handful of stable compounds of Hg22+ are found in nature.  相似文献   
3.
《Cell reports》2020,30(3):807-819.e4
  1. Download : Download high-res image (268KB)
  2. Download : Download full-size image
  相似文献   
4.
《Endocrine practice》2021,27(12):1225-1231
ObjectiveBone health in older individuals with HIV infection has not been well studied. This study aimed to compare bone mineral density (BMD), trabecular bone score (TBS), and bone markers between HIV-infected men and age- and body mass index (BMI)-matched HIV-uninfected men aged ≥60 years. We investigated the associations of risk factors related to fracture with BMD, TBS, and bone markers in HIV-infected men.MethodsThis cross-sectional study included 45 HIV-infected men receiving antiretroviral therapy and 42 HIV-uninfected men. Medical history, BMD and TBS measurements, and laboratory tests related to bone health were assessed in all the participants. HIV-related factors known to be associated with bone loss were assessed in the HIV-infected men.ResultsThe mean BMD, TBS, and osteopenia or osteoporosis prevalence were similar among the cases and controls. The HIV-infected men had significantly higher mean N-terminal propeptide of type 1 procollagen and C-terminal cross-linking telopeptide of type I collagen levels. Stepwise multiple linear regression analysis demonstrated that low BMI (lumbar spine, P = .015; femoral neck, P = .018; and total hip, P = .005), high C-terminal cross-linking telopeptide of type I collagen concentration (total hip, P = .042; and TBS, P = .010), and low vitamin D supplementation (TBS, P = .035) were independently associated with low BMD and TBS.ConclusionIn older HIV-infected men with a low fracture risk, the mean BMD and TBS were similar to those of the age- and BMI-matched controls. The mean bone marker levels were higher in the HIV group. Traditional risk factors for fracture, including low BMI, high C-terminal cross-linking telopeptide of type I collagen level, and low vitamin D supplementation, were significant predictors of low BMD and TBS.  相似文献   
5.
The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.  相似文献   
6.
The uptake of two different preparations of99mTechnetium-methylene diphosphonate in fetal rat calvaria is compared. The localization of99mTc after administration of99mTc(Sn)-MDP and99mTc-MDP showed equal distribution in autoradiography.  相似文献   
7.
Bone and tooth, fundamental parts of the craniofacial skeleton, are anatomically and developmentally interconnected structures. Notably, pathological processes in these tissues underwent together and progressed in multilevels. Extracellular vesicles (EVs) are cell-released small organelles and transfer proteins and genetic information into cells and tissues. Although EVs have been identified in bone and tooth, particularly EVs have been identified in the bone formation and resorption, the concrete roles of EVs in bone and tooth development and diseases remain elusive. As such, we review the recent progress of EVs in bone and tooth to highlight the novel findings of EVs in cellular communication, tissue homeostasis, and interventions. This will enhance our comprehension on the skeletal biology and shed new light on the modulation of skeletal disorders and the potential of genetic treatment.  相似文献   
8.
The cannabinoid type 2 receptor (CB2) has previously been implicated as a regulator of tumor growth, bone remodeling, and bone pain. However, very little is known about the role of the skeletal CB2 receptor in the regulation of osteoblasts and osteoclasts changes associated with breast cancer. Here we found that the CB2-selective agonists HU308 and JWH133 reduced the viability of a variety of parental and bone-tropic human and mouse breast cancer cells at high micromolar concentrations. Under conditions in which these ligands are used at the nanomolar range, HU308 and JWH133 enhanced human and mouse breast cancer cell-induced osteoclastogenesis and exacerbated osteolysis, and these effects were attenuated in cultures obtained from CB2-deficient mice or in the presence of a CB2 receptor blocker. HU308 and JWH133 had no effects on osteoblast growth or differentiation in the presence of conditioned medium from breast cancer cells, but under these circumstances both agents enhanced parathyroid hormone-induced osteoblast differentiation and the ability to support osteoclast formation. Mechanistic studies in osteoclast precursors and osteoblasts showed that JWH133 and HU308 induced PI3K/AKT activity in a CB2-dependent manner, and these effects were enhanced in the presence of osteolytic and osteoblastic factors such as RANKL (receptor activator of NFκB ligand) and parathyroid hormone. When combined with published work, these findings suggest that breast cancer and bone cells exhibit differential responses to treatment with CB2 ligands depending upon cell type and concentration used. We, therefore, conclude that both CB2-selective activation and antagonism have potential efficacy in cancer-associated bone disease, but further studies are warranted and ongoing.  相似文献   
9.
BackgroundSevere acute pancreatitis (SAP) is associated with high morbidity and mortality. Bone marrow mesenchymal stem cells (BMSCs) have shown obvious protective effect on SAP. However, little is known about the underlying mechanism. The objective of this study is to unravel the role and regulatory mechanism of miR-181a-5p in BMSCs-mediated pancreatic repair.MethodsBMSCs were isolated from Sprague-Dawley rats and characterized by flow cytometry and Oil Red O staining. Sodium taurocholate- and caerulein-induced models were used as SAP models in vivo and in vitro, respectively. Pancreatic injury were evaluated by H&E and histopathological analysis, as well as by measuring levels of amylase, lipase and cytokines. qRT-PCR and western blotting were performed to detect the level of miR-181a-5p and the protein levels of PTEN/Akt, respectively. ELISA was conducted to detect the levels of TNF-α, IL-1β, IL-6, angiopoietin, IL-4, IL-10 and TGF-β1. The apoptotic rate of AR42 J cells was quantitated by concurrent staining with Annexin-V-FITC and PI.ResultsBMSCs significantly attenuated pancreatic injury in SAP rats by reducing inflammatory infiltration and necrosis, and this effect was abolished by CXCR4 agonist AMD3100. ADM3100 exhibited more severe pancreatic injury and decreased miR-181a-5p levels in the pancreas and serum compared to SAP group. Overexpression of miR-181a-5p in BMSCs (BMSCs-miR-181a-5p) markedly potentiated the protective effect of BMSCs by reducing histological damage and levels of amylase and lipase. Moreover, BMSCs-miR-181a-5p dramatically reduced levels of angiopoietin, TNF-α, IL-1β and IL-6, but induced the levels of IL-4 and IL-10. In caerulein-treated AR42 J cells, co-culturing of BMSCs-miR-181a-5p alleviated caerulein-induced increase of amylase and lipase, and apoptosis via PTEN/Akt/TGF-β1 signaling.ConclusionBMSCs alleviate SAP and reduce inflammatory responses and apoptosis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Hence, BMSCs-miR-181a-5p could serve as potential therapeutic target for SAP.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号