首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   19篇
  国内免费   17篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   11篇
  2015年   19篇
  2014年   23篇
  2013年   40篇
  2012年   6篇
  2011年   16篇
  2010年   15篇
  2009年   25篇
  2008年   33篇
  2007年   28篇
  2006年   23篇
  2005年   22篇
  2004年   15篇
  2003年   12篇
  2002年   15篇
  2001年   13篇
  2000年   20篇
  1999年   20篇
  1998年   9篇
  1997年   11篇
  1996年   5篇
  1995年   8篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1974年   3篇
排序方式: 共有490条查询结果,搜索用时 46 毫秒
1.
Four minireviews deal with aspects of the α-ketoglutarate/iron-dependent dioxygenases in this eighth Thematic Series on Metals in Biology. The minireviews cover a general introduction and synopsis of the current understanding of mechanisms of catalysis, the roles of these dioxygenases in post-translational protein modification and de-modification, the roles of the ten-eleven translocation (Tet) dioxygenases in the modification of methylated bases (5mC, T) in DNA relevant to epigenetic mechanisms, and the roles of the AlkB-related dioxygenases in the repair of damaged DNA and RNA. The use of α-ketoglutarate (alternatively termed 2-oxoglutarate) as a co-substrate in so many oxidation reactions throughout much of nature is notable and has surprisingly emerged from biochemical and genomic analysis. About 60 of these enzymes are now recognized in humans, and a number have been identified as having critical functions.  相似文献   
2.
Alcaligenes sp. strain O-1 grew with benzene sulfonate (BS) as sole carbon source for growth with either NH4 + or NH4 + plus orthanilate (2-aminobenzene sulfonate, OS) as the source(s) of nitrogen. The intracellular desulfonative enzyme did not degrade 3- or 4-aminobenzene sulfonates in the medium, although the enzyme in cell extracts degraded these compounds. We deduce the presence of a selective permeability barrier to sulfonates and conclude that the first step in sulfonate metabolism is transport into the cell. Cell-free desulfonation of BS in standard reaction mixtures required 2 mol of O2 per mol. One mol of O2 was required for a catechol 2,3-dioxygenase. When meta ring cleavage was inhibited with 3-chlorocatechol in desalted extracts, about 1 mol each of O2 and of NAD(P)H per mol of BS were required for the reaction, and SO3 2- and catechol were recovered in high yield. Catechol was shown to be formed by dioxygenation in an experiment involving 18O2. 4-Toluene sulfonate was subject to NAD(P)H-dependent dioxygenation to yield SO3 2- and 4-methylcatechol, which was subject to meta cleavage. OS also required 2 mol of O2 per mol and NAD(P)H for degradation, and SO3 2- and NH4 + were recovered quantitatively. Inhibition of ring cleavage with 3-chrorocatechol reduced the oxygen requirement to 1 mol per mol of OS SO3 2- (1 mol) and an unidentified organic intermediate, but no NH4 +, were observed.  相似文献   
3.
The metabolism of the polycyclic aromatic hydrocarbon (PAH) carcinogen benzo[a]pyrene (BaP) was studied using microsomes prepared from the skin of the mouse and rat. Topical application of the polychlorinated biphenyl (PCB) Aroclor 1254 or the PAH 3-methylcholanthrene (3-MC) to the skin of the C57BL/6N and DBA/2N mouse and the Sprague-Dawley rat caused statistically significant enhancement of cutaneous microsomal aryl hydrocarbon hydroxylase (AHH) activity in each animal. PCB was a more potent inducer of the enzyme than was 3-MC. BaP metabolism by skin microsomes from the same animals was assessed using high performance liquid chromatography (HPLC). The skin of untreated animals metabolized BaP into 9,10-, 7,8- and 4,5-dihydrodiols, phenols and quinones. Skin application of PCB caused greater than 16–18-fold enhancement of BaP metabolism in the C57BL/6N mouse and the rat and 2–5-fold enhancement in the DBA/2N mouse. Skin application of 3-MC enhanced BaP metabolism 2–8-fold in the C57BL/6N mouse and 5–10-fold in the rat and had no effect in the DBA/2N mouse. The formation of procarcinogenic metabolite BaP-7, 8-diol was greatly enhanced (4–12-fold) by treatment with the PCB and 3-MC in the tumor susceptible C57BL/6N mouse and in the tumor-resistant neonatal Sprague-Dawley rat. In contrast, the formation of BaP-7,8-diol was either slightly enhanced (2-fold) or unaffected by treatment with the PCB or 3-MC in the tumor-resistant DBA/2N mouse. Our data indicate that neither the patterns of metabolism nor the amount of BaP-7,8-diol formation in the skin are reliable predictors of tumor susceptibility to the PAH in rodent skin.  相似文献   
4.
Chlorobenzoates (CBA) arise as intermediates during the degradation of polychlorinated biphenyls (PCBs) and some chlorinated herbicides. Since PCBs were produced as complex mixtures, a range of mono-, di-, and possibly trichloro-substituted benzoates would be formed. Chlorobenzoate degradation has been proposed to be one of the rate-limiting steps in the overall PCB-degradation process. Three hybrid bacteria constructed to have the ability to completely mineralise 2-, 3-, or 4-monochlorobiphenyl respectively, have been studied to establish the range of mono- and diCBAs that can be utilised. The three strains were able to mineralise one or more of the following CBAs: 2-, 3-, and 4-monochlorobenzoate and 3,5-dichlorobenzoate. No utilisation of 2,3-, 2,5-, 2,6-, or 3,4-diCBA was observed, and only a low concentration (0.11 mM) of 2,4-diCBA was mineralised. When the strain with the widest substrate range (Burkholderia cepacia JHR22) was simultaneously supplied with two CBAs, one that it could utilise plus one that it was unable to utilise, inhibitory effects were observed. The utilisation of 2-CBA (2.5 mM) by this strain was inhibited by 2,3-CBA (200 M) and 3,4-CBA (50 M). Although 2,5-CBA and 2,6-CBA were not utilised as carbon sources by strain JHR22, they did not inhibit 2-CBA utilisation at the concentrations studied, whereas 2,4-CBA was co-metabolised with 2-CBA. The utilisation of 2-, 3-, and 4-chlorobiphenyl by strain JHR22 was also inhibited by the presence of 2,3- or 3,4-diCBA. We conclude that the effect of the formation of toxic intermediates is an important consideration when designing remediation strategies.Abbreviations PCB Polychlorinated biphenyl - CBA Chlorobenzoate  相似文献   
5.
The nature of the pigment formed by Vibrio cholerae and the characterization of its biosynthetic pathway is shown. This microorganism is able to synthesize melanin-like pigment when cultured in the presence of L-tyrosine. Other phenolic chemicals related to L-tyrosine do not lead to pigment production. The microorganism has no tyrosine hydroxylase activity, and the levels of dopa oxidase activity are very low, making the existence of a tyrosinase very unlikely. However, Vibrio cholerae contained transami-nases that transforms L-tyrosine into p-hydroxyphenylpyruvate. Moreover, Vibrio cholerae is able to go further in the catabolic pathway, releasing a great amount of homogentisic acid. This acid can spontaneously be oxidized to its p-quinone form, which subsequently polymerizes leading to pigment formation. It is concluded that the pigment formed by Vibrio cholerae is not synthesized by the Raper-Mason pathway, but by a L-tyrosine catabolism pathway leading to homogentisic acid. Some simple properties of that melanin are compared to model eu- and pheomelanin, but no clear distinction could be stated, indicating the similarity between all these pigments.  相似文献   
6.
7.
The enzyme, desacetoxyvindoline 4-hydroxylase, was purified to apparent homogeneity from Catharanthus roseus by ammonium sulfate precipitation and successive chromatography on Sephadex G-100, green 19-agarose, hydroxylapatite, -kg sepharose and Mono Q. The 4-hydroxylase was characterized by its strict specificity for position 4 of desacetoxyvindoline suggesting it to catalyze the second to last step in vindoline biosynthesis. The molecular mass of the native and denatured 4-hydroxylase was 45 kDa and 44.7 kDa, respectively, suggesting that the native enzyme is a monomer. Two-dimensional isoelectric focusing under denaturing conditions resolved the purified 4-hydroxylase into three charge isoforms of pIs 4.6, 4.7 and 4.8. The purified 4-hydroxylase exhibited no requirement for divalent cations, but inactive enzyme was reactivated in a time-dependent manner by incubation with ferrous ions. The enzyme was not inhibited by EDTA or SH-group reagents at concentrations up to 10 mM. The mechanism of action of desacetoxyvindoline 4-hydroxylase was investigated. The results of substrate interaction kinetics and product inhibition studies suggest an Ordered Ter Ter mechanism where -kg is the first substrate to bind followed by the binding of O2 and desacetoxyvindoline. Their K m values for -kg, O2 and desacetoxyvindoline are 45 M, 45 M and 0.03 M, respectively. The first product to be released was deacetylvindoline followed by CO2 and succinate, respectively.Abbreviations -kg -ketoglutarate or 2-oxoglutarate - NMT N-methyltransferase - SAM S-adenosyl-l-methionine - TLC thin layer chromatography - VBL vinblastine - VCR vincristine  相似文献   
8.
The enantiomers of rac-2,2′-diiodobiphenyl were separated by liquid chromatography on microcrystalline triacetylcellulose. The conformational lability, a large separation factor α, and a suitable capacity factor k′(+) of this biphenyl allowed us to convert the racemate into 90% of enantiomerically pure (-)-2,2′-diiodobiphenyl and 10% of pure (+)-2,2′-diiodobiphenyl, respectively, by a series of in situ racemization-elution cycles. The much better retained (+)-enantiomer was racemized on the chromatographic column at 50°C after the less retained (-)-enantiomer has already been eluted at 8°C. © 1995 Wiley-Liss, Inc.  相似文献   
9.
The growth dry weight, fatty acid weight and fatty acid composition of two clones of Thalassiosira pseudonana Hasle & Heimdal were measured under several growth conditions. Determinations of total cellular fatty acids were made using chemical ionization mass spectrometry. Both clones had the same fatty acids, dominated by C14:0, C16:0, C16:1, C16:3, C16:4, C18:4 and C20:5, though in different relative amounts. Fatty acids typically represented 5–10% the dry weight of a cell during log Phase growth and up to 22% during stationary Phase. The C16 fatty acids of both clones changed as the cultures aged, though much more markedly in the Sargasso Sea done (13–1) than in the estuarine one (3H). The C16:0 and C16:1 acids of both clones declined sharply in the dark and were replenished in the light. Cells maintained in constant illumination, but with no cell division. produced large quantities of these acids. Cells of done 13–1 treated with polychlorinated biphenyl (PCB) initially grew more slowly than control cells, weighed more, and had higher relative amounts of C16:0 and C16:1. Fatty acid studies may provide useful indicators of ecologically important energy reserves and membrane adaptations in the algae.  相似文献   
10.
Pseudomonas paucimobilis Q1 originally isolated as biphenyl degrading organism (Furukawa et al. 1983), was shown to grow with naphthalene. After growth with biphenyl or naphthalene the strain synthesized the same enzyme for the ring cleavage of 2,3-dihydroxybiphenyl or 1,2-dihydroxynaphthalene. The enzyme, although characterized as 2,3-dihydroxybiphenyl dioxygenase (Taira et al. 1988), exhibited considerably higher relative activity with 1,2-dihydroxynaphthalene. These results demonstrate that this enzyme can function both in the naphthalene and biphenyl degradative pathway.Abbreviations DHBP dihydroxybiphenyl - DHBPDO 2,3-dihydroxybiphenyl dioxygenase - DHDHNDH 1,2-dihydroxy-1,2-dihydronaphthalene dehydrogenase - DHN 1,2-dihydroxynaphthalene - DHNDO 1,2-dihydroxynaphthalene dioxygenase - HBP cis-2-hydroxybenzalpyruvate - HOPDA 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate - PCB polychlorinated biphenyl - 2NS naphthalene-2-sulfonic acid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号