首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  11篇
  2017年   2篇
  2015年   1篇
  2005年   1篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
排序方式: 共有11条查询结果,搜索用时 10 毫秒
1.
Mixtures of toluene, ethylbenzene, and the xylenes spiked with 14C-labeled toluene or m-xylene were added to bench-scale bioventing simulation columns filled with hydrocarbon-contaminated subsurface soils. After 2 to 4 weeks of incubation during which air was pumped through the column at rates of at least 2?ml·min?1·kg?1 between 54 and 84% of the radiolabel was recovered in traps as outgassed parent compound from four columns sterilized with gamma-irradiation. In contrast, seven nonsterilized but otherwise identically treated (except for inorganic nitrogen addition) columns lost less than 0.4% (and one column lost 0.7%) of the radiolabel through outgassing of the parent compound. Nonsterilized columns lost 40 to 61% of the radiolabel as 14CO2, whereas gamma-irradiated columns usually lost only trace amounts of 14C in this form. Biologically active columns also retained much larger fractions than sterilized columns of the radiolabel in the subsoil in forms, possibly microbial biomass, from which it could be recovered by wet oxidation. Addition of 10 or 40?mg/kg of mineral nitrogen had no consistent effect on bioventing performance.  相似文献   
2.
The effects of bioventing, nutrient addition and inoculation with an oil-degrading bacterium on biodegradation of diesel oil in unsaturated soil were investigated. A mesocosm system was constructed consisting of six soil compartments each containing 6 m3 of naturally contaminated soil mixed 11 with silica sand, resulting in a diesel oil content of approximately 2000 mg kg–1. Biodegradation was monitored over 112 days by determining the actual diesel oil content of the soil and by respirometric tests. The best agreement between calculations of degradation rates based upon the two methods was in July, when venting in combination with nutrient addition resulted in degradation rates of 23 mg kg–1 day–1 based on actual oil concentration in the soil and 33 mg kg–1 day–1 calculated from respirometric data. In September, these rates decreased to 9 and 1.4 mg kg–1 day–1, and in October the degradation rates were 5 and 0.7 mg kg–1 day–1 based upon the two methods. The average ambient temperature during the respirometric tests was 14,10 and 2°C in July, September and October, respectively. The combination of venting and nutrient addition resulted in an average residual oil content of the soil of 380 mg kg–1. Neither venting alone nor inoculation enhanced oil degradation. The respiratory quotient averaged 0.40. The oil composition changed following degradation resulting in the unresolved complex mixture constituting up to 96% of the total oil content at the end of the experimental period.  相似文献   
3.
A field pilot demonstration integrating pneumatic fracturing and in situ bioremediation was carried out in a gasoline-contaminated, low permeability soil formation. A pneumatic fracturing system was used to enhance subsurface air flow and transport rates, as well as to deliver soil amendments directly to the indigenous microbial populations. An in situ bioremediation zone was established and operated for a period of 50 weeks, which included periodic subsurface injections of phosphate, nitrate, and ammonium salts. Off-gas data indicated the formation of a series of aerobic, denitrifying, and methanogenic microbial degradation zones. Based on soil samples recovered from the site, 79% of soil-phase benzene, toluene, and xylenes (BTX) was removed by the integrated technology. From mass balance calculations, accounting for all physical losses, it was estimated that 85% of the total mass of BTX removed (based on mean concentration levels) was attributable to biodegradation.  相似文献   
4.
Preliminary tests at different scales such as degradation experiments (laboratory) in shaking flasks, soil columns and lysimeters as well as in situ respiration tests (field) were performed with soil from two hydrocarbon contaminated sites. Tests have been evaluated in terms of their potential to provide information on feasibility, degradation rates and residual concentration of bioremediation in the vadose zone. Sample size, costs and duration increased with experimental scale in the order shaking flasks – soil columns – lysimeter – in situ respiration tests, only time demand of respiration tests was relatively low. First-order rate constants observed in degradation experiments exhibited significant differences between both, different experimental sizes and different soils. Rates were in line with type and history of contamination at the sites, but somewhat overestimated field rates particularly in small scale experiments. All laboratory experiments allowed an estimation of residual concentrations after remediation. In situ respiration tests were found to be an appropriate pre-testing and monitoring tool for bioventing although residual concentrations cannot be predicted from in situ respiration tests. Moreover, this method does not account for potential limitations that might hamper biodegradation in the longer term but only reflects the actual degradation potential when the test is performed.  相似文献   
5.
The purpose of this research was to investigate the feasibility of suction bioventing for treatment of contaminated tundra soil. Two laboratory-scale venting reactors were prepared with tundra from Arctic Alaska and operated, one for 32?d and the other for 52?d. For each rectangular reactor, suction was applied to a central well screened at mid-depth, while opposite ends of the reactor were screened to serve as air intake zones. The volume of liquid and gas recovered from the suction well was quantified daily. Numbers for heterotrophic organisms, pH, and dissolved organic carbon were quantified in the recovered liquid. The suction pump held a full vacuum (i.e., 101?kPa vac) for the duration of both experiments, indicating continuous obstruction of pneumatic and hydraulic conductivity. In both reactors, the soil in the proximity of the suction well separated from the bulk of the soil, precluding hydraulic communication. Furthermore, the soil nearest the well screen compacted, forming a barrier to appreciable pneumatic conductivity. At the end of operation, the soil was removed and sampled for moisture content, pH, and numbers of heterotrophic organisms at various locations. The results of this study showed that for suction bioventing to be successful in tundra, consolidation of the soil around the well screen must be prevented, as it will cause well isolation and limit both pneumatic and hydraulic conductivities.  相似文献   
6.
Remediation of contaminated soils is often studied using fine-textured soils rather than low-fertility sandy soils, and few studies focus on recontamination events. This study compared aerobic and anaerobic treatments for remediation of freshly introduced used motor oil on a sandy soil previously phytoremediated and bioacclimated (microorganisms already adapted in the soil environment) with some residual total petroleum hydrocarbon (TPH) contamination. Vegetated and unvegetated conditions to remediate anthropogenic fill containing residual TPH that was spiked with nonaqueous phase liquids (NAPLs) were evaluated in a 90-day greenhouse pot study. Vegetated treatments used switchgrass (Panicum virgatum). The concentration of aerobic bacteria were orders of magnitude higher in vegetated treatments compared to unvegetated. Nevertheless, final TPH concentrations were low in all saturated soil treatments, and high in the presence of switchgrass. Concentrations were also low in unvegetated pots with fertilizer. Acclimated indigenous microbial communities were shown to be more effective in breaking down hydrocarbons than introducing microbes from the addition of plant treatments in sandy soils. Remediation of fresh introduced NAPLs on pre-phytoremediated and bioacclimated soil was most efficient in saturated, anaerobic environments, probably due to the already pre-established microbial associations, easily bioavailable contaminants, and optimized soil conditions for microbial establishment and survival.  相似文献   
7.
The effect of temperature on evaporation and biodegradation rates during soil bioventing (SBV) was studied for a mixture of toluene and decane in bench-scale soil columns at a continuous air flow and consecutively at two different flow rates. The effect of temperature on SBV was monitored by GC headspace analysis of contaminant, CO2 and O2 concentrations in the soil gas over time. Separation of evaporation and biodegradation processes into three different phases based on their rates was used together with Q10 and E10 (values that give the factor by which biodegradation and evaporation rates increase when the temperature is raised by 10 degrees) to compare quantitatively the removal kinetics at 10 and 20°C. Adsorption of toluene and decane onto soil (a phase partitioning process) at 20 and 10°C was described with linear Freundlich isotherms. A temperature decrease from 20 to 10°C resulted in an increase of soil-air partitioning coefficients by a factor of 1.8 and of 2.1 for toluene and decane, respectively. The mean Q10 value for the biodegradation of toluene was found to be 2.2 for a temperature rise from 10 to 20°C. A toluene content in the soil gas above 75% of the saturation concentration inhibited biodegradation at both temperatures. The SBV efficiency was dependent on temperature with respect to remediation time. SBV at 20°C resulted in a 99.8% and a 98.7% reduction of toluene and decane initial concentrations, respectively. To reach similar results at 10°C, about 1.6 times as much time and 1.4 times as much air were required; however, at both temperatures the total amounts of biodegraded hydrocarbons were approximately the same. The evaporation-to-biodegradation ratios at 20°C were 82.5:17.5 for toluene and 16:84 for decane, whereas at 10 °C they were 71:29 and 2:98, respectively. A comparison of Q10 values showed that, except during the initial phase of SBV, only a modest decrease in biodegradation rates should be expected after a decrease in temperature from 20 to 10°C. Flow rate reduction had a significant impact on the toluene evaporation rate at a higher temperature, whereas for decane this rate was only slightly affected by temperature. In contrast to decane, the ratio between toluene vapor pressures at 20 and 10°C may be used to predict the removal of toluene by evaporation during the above-mentioned phases of SBV, when evaporation is important.  相似文献   
8.
The proper design of a bioremediation strategy for petroleum-contaminated sites requires a reasonable estimate of the biodegradation rate constant, which is not easy due to spatial heterogeneity. Accordingly, predictive models were developed by completing a bioventing study at the meso-scale. Reactors holding 4 kg of disturbed soil were tested using five different types of soils. Using statistical analysis, a two-stage process was observed, with a fast rate of hydrocarbon degradation in the first 8 days and a slower rate in the remaining 22 days. Review of the correlations showed that the initial population of petroleum-degrading bacteria and increasing silt content had a positive effect on the degradation. A negative impact on the degradation rate was seen by increasing the fraction of organic matter and clay content. Comparison of previously completed micro-scale and meso-scale degradation rates gave a scale-up factor (SF) of 1.8 ± 0.5. Soils with an increased sand fraction had slightly higher SF values, whereas soils high in organic matter content had lower SF values. The measured SF values and developed correlations will help practitioners with site closure decisions, indicating the need for additional SF work to allow better transfer of meso-scale data to the field.  相似文献   
9.
Laboratory and field experiments were carried out for bioremediation of soils contaminated by fuel oil and motor oil. Bioventing was combined with the application of selected bacteria and dissolved nutrients. In the field experiments, soil gas was evacuated by air pumps from the permeable boreholes. The process was followed by both soil and gas analysis. Biodegradation of oil contamination and the microbial activity was measured by the oil and cell concentration in the soil. In 2 months, the oil content decreased considerably, and the cell number increased by one order of magnitude or more. The evacuated gas was tested for CO2, O2 and volatilized hydrocarbon content. The CO2 level proves the presence of biodegradation: a permanent high value about ten times higher than normal, could be measured for 2 months, followed by a slow decrease in the third month. Volatilized hydrocarbon content was the highest in the first 2 d. After a continuous decrease, it dropped under the threshold of measurability for the third month. Selective biodegradation of hydrocarbon mixtures (oily wastes) was investigated as well: gas Chromatographic oil analysis showed the changes in the oil composition. The appropriate microflora was working in an ideal commensalism, and as a result, all of the hydrocarbon components were degraded nearly to the same extent.  相似文献   
10.
The feasibility of soil vapor extraction and bioventing technologies was examined for a petroleum hydrocarbon-contaminated site. The test site was highly contaminated with toluene, ethylbenzene, and xylene, due to leakage from petroleum storage tanks. Three respiration tests demonstrated that the test site conditions were appropriate for application of air-based remediation technologies. The oxygen consumption rates ranged from 4.32 to 7.68 %-O2/day and biodegradation rates ranged from 2.72 to 4.84?mg/kg-day in respiration tests. In a 120-day soil vapor extraction pilot test, high initial mass removals (with tailing effects) were observed. As expected for the soil vapor extraction, the volatilization rate was much higher than the biodegradation rate. In a bioventing trial, the biodegradation effect was predominant, but a tailing effect was not observed. From this study, the suggested sequence of remediation is to construct an integrated system of soil vapor extraction and bioventing and initially operate the soil vapor extraction system until the volatilization rate becomes smaller than the biodegradation rate. After that, the system needs to be changed over to a bioventing mode. Field demonstration supports the feasibility of the proposed integrated system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号