首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   4篇
  国内免费   3篇
  2024年   1篇
  2023年   2篇
  2022年   11篇
  2021年   15篇
  2020年   13篇
  2019年   9篇
  2018年   9篇
  2017年   2篇
  2016年   17篇
  2015年   27篇
  2014年   13篇
  2013年   13篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   7篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1985年   3篇
  1982年   1篇
  1979年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides (Figure 1). The growing product double-strand DNA (dsDNA) is extended with laminar flow and visualized by using an intercalating dye. Measuring the position of the growing DNA end in real time allows precise determination of replication rate (Figure 2). Furthermore, the length of completed DNA products reports on the processivity of replication. This experiment can be performed very easily and rapidly and requires only a fluorescence microscope with a reasonably sensitive camera.  相似文献   
6.
Fire is a primary disturbance in boreal forests and generates both positive and negative climate forcings. The influence of fire on surface albedo is a predominantly negative forcing in boreal forests, and one of the strongest overall, due to increased snow exposure in the winter and spring months. Albedo forcings are spatially and temporally heterogeneous and depend on a variety of factors related to soils, topography, climate, land cover/vegetation type, successional dynamics, time since fire, season, and fire severity. However, how these variables interact to influence albedo is not well understood, and quantifying these relationships and predicting postfire albedo becomes increasingly important as the climate changes and management frameworks evolve to consider climate impacts. Here we developed a MODIS‐derived ‘blue sky’ albedo product and a novel machine learning modeling framework to predict fire‐driven changes in albedo under historical and future climate scenarios across boreal North America. Converted to radiative forcing (RF), we estimated that fires generate an annual mean cooling of ?1.77 ± 1.35 W/m2 from albedo under historical climate conditions (1971–2000) integrated over 70 years postfire. Increasing postfire albedo along a south–north climatic gradient was offset by a nearly opposite gradient in solar insolation, such that large‐scale spatial patterns in RF were minimal. Our models suggest that climate change will lead to decreases in mean annual postfire albedo, and hence a decreasing strength of the negative RF, a trend dominated by decreased snow cover in spring months. Considering the range of future climate scenarios and model uncertainties, we estimate that for fires burning in the current era (2016) the cooling effect from long‐term postfire albedo will be reduced by 15%–28% due to climate change.  相似文献   
7.
Biology is advanced by producing structural models of biological systems, such as protein complexes. Some systems are recalcitrant to traditional structure determination methods. In such cases, it may still be possible to produce useful models by integrative structure determination that depends on simultaneous use of multiple types of data. An ensemble of models that are sufficiently consistent with the data is produced by a structural sampling method guided by a data‐dependent scoring function. The variation in the ensemble of models quantified the uncertainty of the structure, generally resulting from the uncertainty in the input information and actual structural heterogeneity in the samples used to produce the data. Here, we describe how to generate, assess, and interpret ensembles of integrative structural models using our open source Integrative Modeling Platform program ( https://integrativemodeling.org ).  相似文献   
8.
This paper studies the peristaltic transport of a viscoelastic fluid (with the fractional second-grade model) through an inclined cylindrical tube. The wall of the tube is modelled as a sinusoidal wave. The flow analysis is presented under the assumptions of long wave length and low Reynolds number. Caputo's definition of fractional derivative is used to formulate the fractional differentiation. Analytical solutions are developed for the normalized momentum equations. Expressions are also derived for the pressure, frictional force, and the relationship between the flow rate and pressure gradient. Mathematica numerical computations are then performed. The results are plotted and analysed for different values of fractional parameter, material constant, inclination angle, Reynolds number, Froude number and peristaltic wave amplitude. It is found that fractional parameter and Froude number resist the flow pattern while material constant, Reynolds number, inclination of angle and amplitude aid the peristaltic flow. Furthermore, frictional force and pressure demonstrate the opposite behaviour under the influence of the relevant parameters emerging in the equations of motion. The study has applications in uretral biophysics, and also potential use in peristaltic pumping of petroleum viscoelastic bio-surfactants in chemical engineering and astronautical applications involving conveyance of non-Newtonian fluids (e.g. lubricants) against gravity and in conduits with deformable walls.  相似文献   
9.
Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger—a neurotransmitter—into an ion flux through the postsynaptic membrane. They are oligomeric assemblies that provide prototypical examples of allosterically regulated integral membrane proteins. Here, we present an overview of the most recent advances on the signal transduction mechanism based on the X-ray structures of both prokaryotic and invertebrate eukaryotic pLGICs and on atomistic Molecular Dynamics simulations. The present results suggest that ion gating involves a large structural reorganization of the molecule mediated by two distinct quaternary transitions, a global twisting and the blooming of the extracellular domain, which can be modulated by ligand binding at the topographically distinct orthosteric and allosteric sites. The emerging model of gating is consistent with a wealth of functional studies and will boost the development of novel pharmacological strategies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号