首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   110篇
  国内免费   12篇
  2024年   1篇
  2023年   19篇
  2022年   20篇
  2021年   27篇
  2020年   38篇
  2019年   36篇
  2018年   29篇
  2017年   33篇
  2016年   40篇
  2015年   40篇
  2014年   32篇
  2013年   58篇
  2012年   30篇
  2011年   19篇
  2010年   11篇
  2009年   17篇
  2008年   18篇
  2007年   14篇
  2006年   12篇
  2005年   11篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   10篇
  2000年   9篇
  1999年   6篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有572条查询结果,搜索用时 15 毫秒
1.
The foliage leaf epidermis of 35 species representing 12 key genera of woody bamboos of the Asian tropics was investigated using light and scanning electron microscopy. The results indicated that papillae forms and distributional patterns around the stomatal apparatus of the abaxial foliage leaf epidermis were usually constant and were of great taxonomic significance at the specific and generic levels. However, papillae characters were not suitable for dividing subtribes within woody bamboos of the Asian tropics. On the basis of papillae characters, Schizostachyum s.s. and Cephalostachyum were confirmed, but their delimitations should be modified. The transfer of Leptocanna chinensis and Schizostachyum sanguineum into Cephalostachyum was supported, and Cephalostachyum virgatum and C .  pergracile were confirmed to be members of Schizostachyum s.s. The subtribe Racemobambosinae did not obtain support and Racemobambos appeared to be better placed in subtribe Bambusinae. Neomicrocalamus was supported as a close relative and better treated as a synonym of Racemobambos . Gigantochloa was closely related to Dendrocalamus .  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 411–423.  相似文献   
2.
3.
4.
The quality and quantity of allochthonous inputs and of benthic organic matter were investigated in a second-order, perennial mountain stream in the south-west Cape, South Africa, between April 1983 and January 1986. Although the endemic, riparian vegetation is sclerophyllous, low and evergreen, inputs of allochthonous detritus to the stream (434 to 500 g m–2y–1) were similar to those recorded for riparian communities worldwide, as were calorific values of these inputs (9548 to 10 032 KJ m–2y–1). Leaf fall of the riparian vegetation is seasonal, occurring in spring (November) as discharge decreases, resulting in retention of benthic organic matter (BOM) on the stream bed during summer and early autumn (maximum 224 g m–2). Early winter rains (May) scoured the stream almost clean of benthic detritus (winter minimum 8 g m–2). Therefore, BOM was predictably plentiful for about half of each year and predictably scarce for the other half. Coarse BOM (CBOM) and fine BOM (FBOM) constituted 46–64% of BOM standing stock, ultra-fine BOM (UBOM) 16–33% and leaf packs 13–24%. The mean annual calorific value of total BOM standing stock was 1709 KJ m–2. Both standing stocks and total calorific values of BOM were lower than those reported for streams in other biogeographical regions. Values of C:N ratios decreased with decrease in BOM particle size (CBOM 27–100; FBOM 25–27; UBOM 13–19) with no seasonal trends. The stream is erosive with a poor ability to retain organic detritus. Its character appears to be dictated by abiotic factors, the most important of which is winter spates.  相似文献   
5.
Fossil spinicaudatan taxonomy heavily relies on carapace features (size, shape, ornamentation) and palaeontologists have greatly refined methods to study and describe carapace variability. Whether carapace features alone are sufficient for distinguishing between species of a single genus has remained untested. In our study, we tested common palaeontological methods on 481 individuals of the extant Australian genus Ozestheria that have been previously assigned to ten species based on genetic analysis. All species are morphologically distinct based on geometric morphometrics (p ≤ 0.001), but they occupy overlapping regions in Ozestheria morphospace. Linear discriminant analysis of Fourier shape coefficients reaches a mean model performance of 93.8% correctly classified individuals over all possible 45 pairwise species comparisons. This can be further increased by combining the size and shape datasets. Nine of the ten examined species are clearly sexually dimorphic but male and female morphologies strongly overlap within species with little influence on model performance. Ornamentation is commonly species-diagnostic; seven ornamentation types are distinguished of which six are species-specific while one is shared by four species. A transformation of main ornamental features (e.g. from punctate to smooth) can occur among closely related species suggesting short evolutionary timescales. Our overall results support the taxonomic value of carapace features, which should also receive greater attention in the taxonomy of extant species. The extensive variation in carapace shape and ornamentation is noteworthy and several species would probably have been assigned to different genera or families if these had been fossils, bearing implications for the systematics of fossil Spinicaudata.  相似文献   
6.
Molecular phylogenetic studies have shown that the characters of the reduced shell of the false limpets of the genus Siphonaria Sowerby I, 1823 are highly variable and often insufficient for species delimitation. The taxonomy and distribution of Siphonaria in the Indian Ocean are poorly known. We sampled Siphonaria in the Seychelles Bank to check the occurrence of recorded species using DNA sequences and to study the paths through which Siphonaria species have colonised the Seychelles Bank by reconstructing their phylogenetic relationships. Analyses of a dataset comprising 16 S rRNA gene sequences of 33 specimens from the Seychelles Bank and 300 additional Siphonaria sequences from other regions from GenBank with various methods for species delimitation resulted in 19–102 primary species hypotheses. Assemble Species by Automatic Partitioning provided a conservative estimate of the species number (42) in which several indisputable species were lumped. The results of Automatic Barcode Gap Discovery depended strongly on the assumed prior maximum intraspecific divergence, whereas the tree-based methods Generalised Mixed Yule Coalescent and Poisson Tree Processes resulted in high overestimates. The specimens from the Seychelles Bank represent three clades, belonging to the Siphonaria ‘atra’ group, the Siphonaria ‘normalis’ group and a possibly undescribed species recorded previously only from Hainan. At least two of the three species recorded from the Seychelles Bank came from the east, i.e., from the Coral Triangle in the Indo-Australian Archipelago, the region with the highest marine biodiversity worldwide. A major transport mechanism across the Indian Ocean was probably the South Equatorial Current.  相似文献   
7.
The decapod family Penaeidae comprises most of the economically important marine shrimp species. Its members are widespread throughout the world, with its highest species diversity centred in the Indo-West Pacific region. Despite this importance, their taxonomy, classification and phylogeny are not yet settled due in part to incongruence among hypotheses proposed from molecular versus morphological studies. In this study, using a thorough taxonomic sampling of especially the South-East Asian species, we aim to (a) utilize a reconstructed phylogeny to test the monophyly of the Penaeidae and its currently recognized genera and (b) explore its species diversity in South-East Asian waters. To infer the phylogeny, a combined gene data set (including 109 ingroup and six outgroup taxa) of mitochondrial genes, COI and 16S rRNA, and two nuclear genes, NaK and PEPCK, was utilized. To explore its diversity, another data set that included 371 COI gene sequences (231 newly generated and 140 retrieved from public sources) was compiled and subsequently analysed with two different tools (ABGD and bPTP) for species delimitation. Other than supporting the non-monophyly of the Penaeidae with the Sicyoniidae nested within the penaeid tribe Trachypenaeini, the genera Penaeus, Mierspenaeopsis and Parapenaeopsis were also revealed to be polyphyletic. Our species delimitation analysis inferred that 94 putative species actually existed within the 71 morphospecies reviewed, indicating an underestimated biodiversity in this family and the potential presence of new species within the following morphospecies: Kishinouyepenaeopsis cornuta, K. incisa, Mierspenaeopsis sculptilis, M hardwicki, Parapenaeopsis coromandelica and Penaeus monodon.  相似文献   
8.
Vegetation in tropical Asia is highly diverse due to large environmental gradients and heterogeneity of landscapes. This biodiversity is threatened by intense land use and climate change. However, despite the rich biodiversity and the dense human population, tropical Asia is often underrepresented in global biodiversity assessments. Understanding how climate change influences the remaining areas of natural vegetation is therefore highly important for conservation planning. Here, we used the adaptive Dynamic Global Vegetation Model version 2 (aDGVM2) to simulate impacts of climate change and elevated CO2 on vegetation formations in tropical Asia for an ensemble of climate change scenarios. We used climate forcing from five different climate models for representative concentration pathways RCP4.5 and RCP8.5. We found that vegetation in tropical Asia will remain a carbon sink until 2099, and that vegetation biomass increases of up to 28% by 2099 are associated with transitions from small to tall woody vegetation and from deciduous to evergreen vegetation. Patterns of phenology were less responsive to climate change and elevated CO2 than biomes and biomass, indicating that the selection of variables and methods used to detect vegetation changes is crucial. Model simulations revealed substantial variation within the ensemble, both in biomass increases and in distributions of different biome types. Our results have important implications for management policy, because they suggest that large ensembles of climate models and scenarios are required to assess a wide range of potential future trajectories of vegetation change and to develop robust management plans. Furthermore, our results highlight open ecosystems with low tree cover as most threatened by climate change, indicating potential conflicts of interest between biodiversity conservation in open ecosystems and active afforestation to enhance carbon sequestration.  相似文献   
9.
The African colubrid snake genus Crotaphopeltis currently comprises six species and occurs throughout sub-Saharan Africa. The most widespread of these, Crotaphopeltis hotamboeia, inhabits most biomes, aside from rainforest and hyper-arid regions, and its catholic niche has presumably facilitated substantial gene flow. Despite this, the geographical range is large enough that ecological or physical barriers might exist, facilitating allopatric diversification. In contrast, most of the other species are habitat specialists with limited distributions (e.g., Crotaphopeltis tornieri) and would be expected to show strong genetic structure. We therefore examined species boundaries within Crotaphopeltis in a phylogenetic context using five markers (16S, cyt b, ND4, c-mos, and RAG-1) for four of the six species. Species delimitation methods included two coalescent-based and one barcoding approach. Widespread geographical sampling of C. hotamboeia allowed examination of genetic structuring across its range. The species status of Crotaphopeltis barotseensis, C. degeni, and C. hotamboeia was confirmed, whereas the Afromontane species C. tornieri comprised two candidate species. Crotaphopeltis hotamboeia did not show cryptic speciation, although its phylogeographic structure corresponded with the spatiotemporal pattern of the African savanna. Our results show how the heterogeneous African environment could influence genetic partitioning of habitat specialist and generalist species at broad geographical scales.  相似文献   
10.
Species‐level diversity and the underlying mechanisms that lead to the formation of new species, that is, speciation, have often been confounded with intraspecific diversity and population subdivision. The delineation between intraspecific and interspecific divergence processes has received much less attention than species delimitation. The ramifications of confounding speciation and population subdivision are that the term speciation has been used to describe many different biological divergence processes, rendering the results, or inferences, between studies incomparable. Phylogeographic studies have advanced our understanding of how spatial variation in the pattern of biodiversity can begin, become structured, and persist through time. Studies of species delimitation have further provided statistical and model‐based approaches to determine the phylogeographic entities that merit species status. However, without a proper understanding and delineation between the processes that generate and maintain intraspecific and interspecific diversity in a study system, the delimitation of species may still not be biologically and evolutionarily relevant. I argue that variation in the continuity of the divergence process among biological systems could be a key factor leading to the enduring contention in delineating divergence patterns, or species delimitation, meriting future comparative studies to help us better understand the nature of biological species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号