首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2010年   1篇
  2008年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Wastewater treatment using laboratory scale waste stabilisation ponds enriched with activated sludge was studied. After enrichment, the efficiency of these ponds under high organic loading rates (i.e., up to 2800kg CODha–1day–1) reached a maximum COD removal rate of 970kg CODha–1day–1, which is from 2 to 10 times more than commonly reported values, and suggests that enrichment is an effective method to improve stabilisation ponds.  相似文献   
2.
Aims: To study the potential biocontrol activity of bioflocs technology. Methods and Results: Glycerol‐grown bioflocs were investigated for their antimicrobial and antipathogenic properties against the opportunistic pathogen Vibrio harveyi. The bioflocs did not produce growth‐inhibitory substances. However, bioflocs and biofloc supernatants decreased quorum sensing‐regulated bioluminescence of V. harveyi. This suggested that the bioflocs had biocontrol activity against this pathogen because quorum sensing regulates virulence of vibrios towards different hosts. Interestingly, the addition of live bioflocs significantly increased the survival of gnotobiotic brine shrimp (Artemia franciscana) larvae challenged to V. harveyi. Conclusions: Bioflocs grown on glycerol as carbon source inhibit quorum sensing‐regulated bioluminescence in V. harveyi and protect brine shrimp larvae from vibriosis. Significance and Impact of the Study: The results presented in this study indicate that in addition to water quality control and in situ feed production, bioflocs technology could help in controlling bacterial infections within the aquaculture pond.  相似文献   
3.
Extracellular polymeric substances (EPS) of microbial origin are a complex mixture of biopolymers comprising polysaccharides, proteins, nucleic acids, uronic acids, humic substances, lipids, etc. Bacterial secretions, shedding of cell surface materials, cell lysates and adsorption of organic constituents from the environment result in EPS formation in a wide variety of free-living bacteria as well as microbial aggregates like biofilms, bioflocs and biogranules. Irrespective of origin, EPS may be loosely attached to the cell surface or bacteria may be embedded in EPS. Compositional variation exists amongst EPS extracted from pure bacterial cultures and heterogeneous microbial communities which are regulated by the organic and inorganic constituents of the microenvironment. Functionally, EPS aid in cell-to-cell aggregation, adhesion to substratum, formation of flocs, protection from dessication and resistance to harmful exogenous materials. In addition, exopolymers serve as biosorbing agents by accumulating nutrients from the surrounding environment and also play a crucial role in biosorption of heavy metals. Being polyanionic in nature, EPS forms complexes with metal cations resulting in metal immobilization within the exopolymeric matrix. These complexes generally result from electrostatic interactions between the metal ligands and negatively charged components of biopolymers. Moreover, enzymatic activities in EPS also assist detoxification of heavy metals by transformation and subsequent precipitation in the polymeric mass. Although the core mechanism for metal binding and / or transformation using microbial exopolymer remains identical, the existence and complexity of EPS from pure bacterial cultures, biofilms, biogranules and activated sludge systems differ significantly, which in turn affects the EPS-metal interactions. This paper presents the features of EPS from various sources with a view to establish their role as central elements in bioremediation of heavy metals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号