首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2019年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2007年   2篇
  2005年   2篇
排序方式: 共有10条查询结果,搜索用时 500 毫秒
1
1.
2.
Polyhydroxybutyrate (PHB) is a bacterial polyester that has properties similar to some petrochemically produced plastics. Plant-based production has the potential to make this biorenewable plastic highly competitive with petrochemical-based plastics. We previously reported that transgenic sugarcane produced PHB at levels as high as 1.8% leaf dry weight without penalty to biomass accumulation, suggesting scope for improving PHB production in this species. In this study, we used different plant and viral promoters, in combination with multigene or single-gene constructs to increase PHB levels. Promoters tested included the maize and rice polyubiquitin promoters, the maize chlorophyll A/B-binding protein promoter and a Cavendish banana streak badnavirus promoter. At the seedling stage, the highest levels of polymer were produced in sugarcane plants when the Cavendish banana streak badnavirus promoter was used. However, in all cases, this promoter underwent silencing as the plants matured. The rice Ubi promoter enabled the production of PHB at levels similar to the maize Ubi promoter. The maize chlorophyll A/B-binding protein promoter enabled the production of PHB to levels as high as 4.8% of the leaf dry weight, which is approximately 2.5 times higher than previously reported levels in sugarcane. This is the first time that this promoter has been tested in sugarcane. The highest PHB-producing lines showed phenotypic differences to the wild-type parent, including reduced biomass and slight chlorosis.  相似文献   
3.
Bovine κ-casein showed a typical CD spectrum for an aperiodic conformation in the far UV region. The comparison of the near UV absorption spectrum of native κ-casein with that of a model compound mixture (Ac-tyr-OEt+Ac-trp-OEt, molar ratio=9: 1) showed a red shift of the former by 2 nm to the longer wavelength. The difference spectra produced by the addition of urea to κ-casein solution showed three peaks at 280, 287, and 292 nm, of which the sign was negative (denaturation blue shift). The magnitude of the blue shift of the trypto- phyl group was found to be ?2,200. It is concluded from these results that some tyrosyl groups are exposed to the solvent, and the other tyrosyl groups and a tryptophyl group are buried in the hydrophobic regions which is very susceptible to the action of a denaturing agent, urea. All the chromophores in κ-casein was exposed to the solvent in the presence of 4 m urea. κ-Casein in the native state was proved to have an aperiodic structure but not a flexible random coil.  相似文献   
4.
Although a physiological role of heat-shock proteins (HSP) in antigen presentation and immune response activation has not been directly demonstrated, their use as vaccine components is under clinical trial. We have previously demonstrated that the structure of plant-derived HSP70 (pHSP70) can be superimposed to the mammalian homologue and similarly to the mammalian counterpart, pHSP70-polypeptide complexes can activate the immune system. It is here shown that pHSP70 purified from plant tissues transiently expressing the influenza virus nucleoprotein are able to induce both the activation of major histocompatibility complex class I-restricted polyclonal T-cell responses and antibody production in mice of different haplotypes without the need of adjuvant co-delivery. These results indicate that pHSP70 derived from plants producing recombinant antigens may be used to formulate multiepitope vaccines.  相似文献   
5.
Summary Commercial sugarcane, belonging to the genus Saccharum (Poaceae), is an important industrial crop accounting for nearly 70% of sugar produced worldwide. Compared to other major crops, efforts to improve sugarcane are limited and relatively recent, with the first introduction of interspecific hybrids about 80 yr ago. Progress in traditional breeding of sugareane, a highly polyploid and frequently aneuploid plant, is impeded by its narrow gene pool, complex genome, poor fertility, and the long breeding/selection cycle. These constraints, however, make sugarcane a good candidate for molecular breeding. In the past decade considerable progress has been made in understanding and manipulating the sugarcane genome using various biotechnological and cell biological approaches. Notable among them are the creation of transgenic plants with improved agronomic or other important traits, advances in genomics and molecular markers, and progress in understanding the molecular aspects of sucrose transport and accumulation. More recently, substantial effort has been directed towards developing sugarcane as a biofactory for high-value products. While these achievements are commendable, a greater understanding of the sugarcane genome, and cell and whole plant physiology, will accelerate the implementation of commercially significant biotechnology outcomes. We anticipate that the rapid advancements in molecular biology and emerging biotechnology innovations would play a significant role in the future sugarcane crop improvement programs and offer many new opportunities to develop it as a new-generation industrial crop.  相似文献   
6.
Over 300 transgenic sugarcane plants representing approx. 200 independent lines producing the human cytokine granulocyte macrophage colony stimulating factor (GM-CSF) were analyzed for recombinant protein accumulation and activity levels. Expression constructs differed in use of the maize polyubiquitin 1, Mubi-1, or the sugarcane polyubiquitin 9, SCubi9, promoters; presence or absence of a C-terminal HDEL tag for ER retention; and presence or absence of a 6X Histidine tag for metal ion affinity purification. Accumulation of GM-CSF protein ranged from undetectable to 0.02 of total soluble protein. No significant difference was observed between the two promoters; however, the ER retention tag was required for higher accumulation levels. Human bone marrow cells (TF-1), which require GM-CSF for cell division, proliferated when growth media was supplemented with transgenic sugarcane extracts. Comparison to purified commercially produced GM-CSF indicated the sugarcane-produced protein had essentially identical activity levels. In a 14-month field trial, accumulation levels remained stable. This is the first report of field production of GM-CSF. During the field trial, no flowering of the trial plants occurred; no pollen or seed was produced. Drying, burning, and burial of the test plants effectively blocked possible routes for the transgenic sugarcane to enter the environment or food supply. Sugarcane may provide a highly secure system for biofactory production of pharmaceutical proteins.This revised version was published online in May 2005 with corrections to the last authors name.  相似文献   
7.
Production of polyhydroxybutyrate in sugarcane   总被引:2,自引:0,他引:2  
We report here the production of the bacterial polyester, polyhydroxybutyrate (PHB), in the crop species sugarcane ( Saccharum spp. hybrids). The PHB biosynthesis enzymes of Ralstonia eutropha [β-ketothiolase (PHAA), acetoacetyl-reductase (PHAB) and PHB synthase (PHAC)] were expressed in the cytosol or targeted to mitochondria or plastids. PHB accumulated in cytosolic lines at trace amounts, but was not detected in mitochondrial lines. In plastidic lines, PHB accumulated in leaves to a maximum of 1.88% of dry weight without obvious deleterious effects. Epifluorescence and electron microscopy of leaf sections from these lines revealed that PHB granules were visible in plastids of most cell types, except mesophyll cells. The concentration of PHB in culm internodes of plastidic lines was substantially lower than in leaves. Western blot analysis of these lines indicated that expression of the PHB biosynthesis proteins was not limiting in culm internodes. Epifluorescence microscopy of culm internode sections from plastidic lines showed that PHB granules were visible in most cell types, except photosynthetic cortical cells in the rind, and that the lower PHB concentration in culm internodes was probably a result of dilution of PHB-containing cells by the large number of cells with little or no PHB. We discuss strategies for producing PHB in mitochondria and mesophyll cell plastids, and for increasing PHB yields in culms.  相似文献   
8.
Fungi that infect plants, animals or humans pose a serious threat to human health and food security. Antifungal proteins (AFPs) secreted by filamentous fungi are promising biomolecules that could be used to develop new antifungal therapies in medicine and agriculture. They are small highly stable proteins with specific potent activity against fungal pathogens. However, their exploitation requires efficient, sustainable and safe production systems. Here, we report the development of an easy‐to‐use, open access viral vector based on Tobacco mosaic virus (TMV). This new system allows the fast and efficient assembly of the open reading frames of interest in small intermediate entry plasmids using the Gibson reaction. The manipulated TMV fragments are then transferred to the infectious clone by a second Gibson assembly reaction. Recombinant proteins are produced by agroinoculating plant leaves with the resulting infectious clones. Using this simple viral vector, we have efficiently produced two different AFPs in Nicotiana benthamiana leaves, namely the Aspergillus giganteus AFP and the Penicillium digitatum AfpB. We obtained high protein yields by targeting these bioactive small proteins to the apoplastic space of plant cells. However, when AFPs were targeted to intracellular compartments, we observed toxic effects in the host plants and undetectable levels of protein. We also demonstrate that this production system renders AFPs fully active against target pathogens, and that crude plant extracellular fluids containing the AfpB can protect tomato plants from Botrytis cinerea infection, thus supporting the idea that plants are suitable biofactories to bring these antifungal proteins to the market.  相似文献   
9.
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers with diverse plastic‐like properties. PHA biosynthesis in transgenic plants is being developed as a way to reduce the cost and increase the sustainability of industrial PHA production. The homopolymer polyhydroxybutyrate (PHB) is the simplest form of these biodegradable polyesters. Plant peroxisomes contain the substrate molecules and necessary reducing power for PHB biosynthesis, but peroxisomal PHB production has not been explored in whole soil‐grown transgenic plants to date. We generated transgenic sugarcane (Saccharum sp.) with the three‐enzyme Ralstonia eutropha PHA biosynthetic pathway targeted to peroxisomes. We also introduced the pathway into Arabidopsis thaliana, as a model system for studying and manipulating peroxisomal PHB production. PHB, at levels up to 1.6%–1.8% dry weight, accumulated in sugarcane leaves and A. thaliana seedlings, respectively. In sugarcane, PHB accumulated throughout most leaf cell types in both peroxisomes and vacuoles. A small percentage of total polymer was also identified as the copolymer poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) in both plant species. No obvious deleterious effect was observed on plant growth because of peroxisomal PHA biosynthesis at these levels. This study highlights how using peroxisomal metabolism for PHA biosynthesis could significantly contribute to reaching commercial production levels of PHAs in crop plants.  相似文献   
10.
We report here the results from a glasshouse trial of several transgenic sugarcane ( Saccharum spp. hybrids) lines accumulating the bacterial polyester polyhydroxybutyrate (PHB) in plastids. The aims of the trial were to characterize the spatio-temporal pattern of PHB accumulation at a whole-plant level, to identify factors limiting PHB production and to determine whether agronomic performance was affected adversely by PHB accumulation. Statistical analysis showed that a vertical PHB concentration gradient existed throughout the plant, the polymer concentration being lowest in the youngest leaves and increasing with leaf age. In addition, there was a horizontal gradient along the length of a leaf, with the PHB concentration increasing from the youngest part of the leaf (the base) to the oldest (the tip). The rank order of the lines did not change over time. Moreover, there was a uniform spatio-temporal pattern of relative PHB accumulation among the lines, despite the fact that they showed marked differences in absolute PHB concentration. Molecular analysis revealed that the expression of the transgenes encoding the PHB biosynthesis enzymes was apparently coordinated, and that there were good correlations between PHB concentration and the abundance of the PHB biosynthesis enzymes. The maximum recorded PHB concentration, 1.77% of leaf dry weight, did not confer an agronomic penalty. The plant height, total aerial biomass and culm-internode sugar content were not affected relative to controls. Although moderate PHB concentrations were achieved in leaves, the maximum total-plant PHB yield was only 0.79% (11.9 g PHB in 1.51 kg dry weight). We combine the insights from our statistical and molecular analyses to discuss possible strategies for increasing the yield of PHB in sugarcane.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号