首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   116篇
  国内免费   12篇
  406篇
  2023年   25篇
  2022年   4篇
  2021年   9篇
  2020年   28篇
  2019年   28篇
  2018年   17篇
  2017年   42篇
  2016年   41篇
  2015年   39篇
  2014年   35篇
  2013年   25篇
  2012年   36篇
  2011年   20篇
  2010年   15篇
  2009年   26篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1986年   1篇
排序方式: 共有406条查询结果,搜索用时 0 毫秒
1.
Bioenergy could play a major role in decarbonizing energy systems in the context of the Paris Agreement. Large-scale bioenergy deployment could be related to sustainability issues and requires major infrastructure investments. It, therefore, needs to be studied carefully. The Bioenergy and Land Optimization Spatially Explicit Model (BLOEM) presented here allows for assessing different bioenergy pathways while encompassing various dimensions that influence their optimal deployment. In this study, BLOEM was applied to the Brazilian context by coupling it with the Brazilian Land Use and Energy Systems (BLUES) model. This allowed investigating the most cost-effective ways of attending future bioenergy supply projections and studying the role of recovered degraded pasture lands in improving land availability in a sustainable and competitive manner. The results show optimizing for limiting deforestation and minimizing logistics costs results in different outcomes. It also indicates that recovering degraded pasture lands is attractive from both logistics and climate perspectives. The systemic approach of BLOEM provides spatial results, highlighting the trade-offs between crop allocation, land use and the logistics dynamics between production, conversion, and demand, providing valuable insights for regional and national climate policy design. This makes it a useful tool for mapping sustainable bioenergy value chain pathways.  相似文献   
2.
Genetic improvement and hybridization in the Populus genus have led to the development of genotypes exhibiting fast growth, high rooting ability and disease resistance. However, while large biomass production is important for bioenergy crops, efficient use of resources including water is also important in sites lacking irrigation and for maintaining ecosystem water availability. In addition, comparison of water use strategies across a range of growth rates and genetic variability can elucidate whether certain strategies are shared among the fastest growing and/or most water use efficient genotypes. We estimated tree water use throughout the second growing season via sapflow sensors of 48 genotypes from five Populus taxa; P. deltoides W. Bartram ex Marshall × P. deltoides (D × D), P. deltoides × P. maximowiczii A. Henry (D × M), P. deltoides × P. nigra L. (D × N), P. deltoides × P. trichocarpa Torr. & Gray (D × T) and P. trichocarpa × P. deltoides (T × D) and calculated average canopy stomatal conductance (GS). We regressed GS and atmospheric vapor pressure deficit (VPD) wherein the slope of the relationship represents stomatal sensitivity to VPD. At the end of the second growing season, trees were harvested, and their dry woody biomass was used to calculate whole tree water use efficiency (WUET). We found that D × D and D × M genotypes exhibited differing water use strategies with D × D genotypes exhibiting high stomatal sensitivity while retaining leaves while D × M genotypes lost leaf area throughout the growing season but exhibited low stomatal sensitivity. Across measured taxa, biomass growth was positively correlated with WUET, and genotypes representing each measured taxa except D × N and T × D had high 2-year dry biomass of above 6 kg/tree. Overall, these data can be used to select Populus genotypes that combine high biomass growth with stomatal sensitivity and WUET to limit the negative impacts of bioenergy plantations on ecosystem water resources.  相似文献   
3.
唐梦  陈静  杨灵懿  贾翔  刘济铭  段劼 《生态学报》2023,43(24):10156-10170
生物燃油树种是发展生物质能源,实现化石能源替代战略的重要物质基础,明确当前和未来气候变化下我国生物燃油树种适生区分布,对保护和利用生物燃油树种,促进林业生物能源产业发展,保障能源安全和实现“双碳”目标具有重要意义。基于我国10个主要生物燃油树种的1037条树种分布数据和20个环境变量,利用最大熵模型(MaxEnt)预测了各树种当前和未来气候情景下(2050年和2070年的RCP4.5情景)的潜在适生区,得到了影响各树种分布贡献率最大的环境因子,并对我国各区域主要种植树种进行了区划。结果表明:(1)MaxEent模型预测效果较好,各树种模拟结果AUC值均在0.9以上。(2)影响各种分布的贡献率较高的环境因子因树种而异,最暖季度降水量和温度季节性变化标准差的相对贡献率较高。(3)10个生物燃油树种极高适生区面积范围在43.38万km2—117.74万km2之间,可根据模拟结果将树种分布划分为北部、中东部、东南部和西南部4个亚区,北部亚区主要树种为文冠果(Xanthoceras sorbifolium)和欧李(Cerasus humilis),中东...  相似文献   
4.
Nitrous oxide (N2O) is a potent greenhouse gas and major component of the net global warming potential of bioenergy feedstock cropping systems. Numerous environmental factors influence soil N2O production, making direct correlation difficult to any one factor of N2O fluxes under field conditions. We instead employed quantile regression to evaluate whether soil temperature, water‐filled pore space (WFPS), and concentrations of soil nitrate () and ammonium () determined upper bounds for soil N2O flux magnitudes. We collected data over 6 years from a range of bioenergy feedstock cropping systems including no‐till grain crops, perennial warm‐season grasses, hybrid poplar, and polycultures of tallgrass prairie species each with and without nitrogen (N) addition grown at two sites. The upper bounds for soil N2O fluxes had a significant and positive correlation with all four environmental factors, although relatively large fluxes were still possible at minimal values for nearly all factors. The correlation with was generally weaker, suggesting it is less important than in driving large fluxes. Quantile regression slopes were generally lower for unfertilized perennials than for other systems, but this may have resulted from a perpetual state of nitrogen limitation, which prevented other factors from being clear constraints. This framework suggests efforts to reduce concentrations of in the soil may be effective at reducing high‐intensity periods—”hot moments”—of N2O production.  相似文献   
5.
Using prairie biomass as a renewable source of energy may constitute an important opportunity to improve the environmental sustainability of managed land. To date, assessments of the feasibility of using prairies for bioenergy production have focused on marginal areas with low yield potential. Growing prairies on more fertile soil or with moderate levels of fertilization may be an effective means of increasing yields, but increased fertility often reduces plant community diversity. At a fertile site in central Iowa with high production potential, we tested the hypothesis that nitrogen fertilization would increase aboveground biomass production but would decrease diversity of prairies sown and managed for bioenergy production. Over a 3 year period (years 2–4 after seeding), we measured aboveground biomass after plant senescence and species and functional‐group diversity in June and August for multispecies mixtures of prairie plants that received no fertilizer or 84 kg N ha?1 year?1. We found that nitrogen fertilization increased aboveground biomass production, but with or without fertilization, the prairies produced a substantial amount of biomass: averaging (±SE) 12.2 ± 1.3 and 9.1 ± 1.0 Mg ha?1 in fertilized and unfertilized prairies, respectively. Unfertilized prairies had higher species diversity in June, whereas fertilized prairies had higher species diversity in August at the end of the study period. Functional‐group diversity was almost always higher in fertilized prairies. Composition of unfertilized prairies was characterized by native C4 grasses and legumes, whereas fertilized prairies were characterized by native C3 grasses and forbs. Although most research has found that nitrogen fertilization reduces prairie diversity, our results indicate that early‐spring nitrogen fertilization, when used with a postsenescence annual harvest, may increase prairie diversity. Managing prairies for bioenergy production, including the judicious use of fertilization, may be an effective means of increasing the amount of saleable products from managed lands while potentially increasing plant diversity.  相似文献   
6.
The United States Great Lakes Region (USGLR) is a critical geographic area for future bioenergy production. Switchgrass (Panicum virgatum) is widely considered a carbon (C)‐neutral or C‐negative bioenergy production system, but projected increases in air temperature and precipitation due to climate change might substantially alter soil organic C (SOC) dynamics and storage in soils. This study examined long‐term SOC changes in switchgrass grown on marginal land in the USGLR under current and projected climate, predicted using a process‐based model (Systems Approach to Land‐Use Sustainability) extensively calibrated with a wealth of plant and soil measurements at nine experimental sites. Simulations indicate that these soils are likely a net C sink under switchgrass (average gain 0.87 Mg C ha?1 year?1), although substantial variation in the rate of SOC accumulation was predicted (range: 0.2–1.3 Mg C ha?1 year?1). Principal component analysis revealed that the predicted intersite variability in SOC sequestration was related in part to differences in climatic characteristics, and to a lesser extent, to heterogeneous soils. Although climate change impacts on switchgrass plant growth were predicted to be small (4%–6% decrease on average), the increased soil respiration was predicted to partially negate SOC accumulations down to 70% below historical rates in the most extreme scenarios. Increasing N fertilizer rate and decreasing harvest intensity both had modest SOC sequestration benefits under projected climate, whereas introducing genotypes better adapted to the longer growing seasons was a much more effective strategy. Best‐performing adaptation scenarios were able to offset >60% of the climate change impacts, leading to SOC sequestration 0.7 Mg C ha?1 year?1 under projected climate. On average, this was 0.3 Mg C ha?1 year?1 more C sequestered than the no adaptation baseline. These findings provide crucial knowledge needed to guide policy and operational management for maximizing SOC sequestration of future bioenergy production on marginal lands in the USGLR.  相似文献   
7.
It is expected that Brazil could play an important role in biojet fuel (BJF) production in the future due to the long experience in biofuel production and the good agro‐ecological conditions. However, it is difficult to quantify the techno‐economic potential of BJF because of the high spatiotemporal variability of available land, biomass yield, and infrastructure as well as the technological developments in BJF production pathways. The objective of this research is to assess the recent and future techno‐economic potential of BJF production in Brazil and to identify location‐specific optimal combinations of biomass crops and technological conversion pathways. In total, 13 production routes (supply chains) are assessed through the combination of various biomass crops and BJF technologies. We consider temporal land use data to identify potential land availability for biomass production. With the spatial distribution of the land availability and potential yield of biomass crops, biomass production potential and costs are calculated. The BJF production cost is calculated by taking into account the development in the technological pathways and in plant scales. We estimate the techno‐economic potential by determining the minimum BJF total costs and comparing this with the range of fossil jet fuel prices. The techno‐economic potential of BJF production ranges from 0 to 6.4 EJ in 2015 and between 1.2 and 7.8 EJ in 2030, depending on the reference fossil jet fuel price, which varies from 19 to 65 US$/GJ across the airports. The techno‐economic potential consists of a diverse set of production routes. The Northeast and Southeast region of Brazil present the highest potentials with several viable production routes, whereas the remaining regions only have a few promising production routes. The maximum techno‐economic potential of BJF in Brazil could meet almost half of the projected global jet fuel demand toward 2030.  相似文献   
8.
9.
Duckweed (Lemnaceae) is a fast‐growing aquatic vascular plant. It has drawn an increasing attention worldwide due to its application in value‐added nutritional products and in sewage disposal. In particular, duckweed is a promising feedstock for bioenergy production. In this review, we summarized applications of duckweed from the following four aspects. Firstly, duckweed could utilize nitrogen, phosphorus, and inorganic nutrition in wastewater and reduces water eutrophication efficiently. During these processes, microorganisms play an important role in promoting duckweed growth and improving its tolerance to stresses. We also introduced our pilot‐scale test using duckweed for wastewater treatment and biomass production simultaneously. Secondly, its capability of fast accumulation of large amounts of starch makes duckweed a promising bioenergy feedstock, catering the currently increasing demand for bioethanol production. Pretreatment conditions prior to fermentation can be optimized to improve the conversion efficiency from starch to bioethanol. Furthermore, duckweed serves as an ideal source for food supply or animal feed because the composition of amino acids in duckweed is similar to that of whey protein, which is easily digested and assimilated by human and other animals. Finally, severing as a natural plant factory, duckweed has shown great potential in the production of pharmaceuticals and dietary supplements. With the surge of omics data and the development of Clustered Regularly Interspaced Short Palindromic Repeats technology, remodeling of the metabolic pathway in duckweed for synthetic biology study will be attainable in the future.  相似文献   
10.
The environmental impact of the water consumption of four typical crop rotations grown in Spain, including energy crops, was analyzed and compared against Spanish agricultural and natural reference situations. The life cycle assessment (LCA) methodology was used for the assessment of the potential environmental impact of blue water (withdrawal from water bodies) and green water (uptake of soil moisture) consumption. The latter has so far been disregarded in LCA. To account for green water, two approaches have been applied: the first accounts for the difference in green water demand of the crops and a reference situation. The second is a green water scarcity index, which measures the fraction of the soil‐water plant consumption to the available green water. Our results show that, if the aim is to minimize the environmental impacts of water consumption, the energy crop rotations assessed in this study were most suitable in basins in the northeast of Spain. In contrast, the energy crops grown in basins in the southeast of Spain were associated with the greatest environmental impacts. Further research into the integration of quantitative green water assessment in LCA is crucial in studies of systems with a high dependence on green water resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号