首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   9篇
  国内免费   14篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   6篇
  2008年   9篇
  2007年   2篇
  2006年   4篇
  2005年   9篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1995年   3篇
  1994年   1篇
  1991年   3篇
  1989年   2篇
  1984年   2篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
Poly(acrylonitrile-co-vinyl chloride) (PAN/VC) anisotropic membranes were chemically modified with poly(ethylene oxide) (PEO) (5000 and 20,000 g/mol) by one of two aqueous reactions: (a) acid hydrolysis of the nitrile group to a carboxylic acid with which amine-terminated PEO (PEO-NH(2)) reacted or (b) base reduction of the nitrile group to an amine with which PEO-succinimide (PEO-SC) reacted. Approximately 1.3% of the bulk material was modified with PEO-NH(2) whereas 1.8 to 3.5% was modified with PEO-SC as determined by proton nuclear magnetic resonance ((1)H NMR) and attenuated total reflectance Fourier transform infrared (ATR FTIR) spectra. Approximately 50 to 75% less bovine serum albumin (BSA) adsorbed to PEO-grafted single skin fibers than to unmodified PAN/VC. Transport properties of modified and unmodified fibers were compared by passive diffusion, convective nominal molecular weight cutoff, and hydraulic permeability. Neither hydraulic permeability nor nominal molecular weight cutoff of BSA changed appreciably after surface modification with PEO indicating that pore structure was not adversely affected by the chemistry involved in grafting poly(ethylene oxide). However, in the absence of any membrane conditioning, the apparent diffusion of alpha-chymotrypsinogen (24,000 g/mol) was enhanced in PEO-grafted PAN/VC fibers possibly as a result of reduced sorption of the permeating protein. In vivo biocompatibility in the brain tissue of rats was judged by histological assessment of the host's cellular response to fibers implanted for 30 days; biocompatibility of both PAN/VC and PAN/VC-g-PEO was satisfactory but improved slightly with PEO grafting. (c) 1994 John Wiley & Sons, Inc.  相似文献   
2.
Contact of mononuclear human leukocytes with cellulose dialysis membranes may result in complement-independent cell activation, i.e. enhanced synthesis of cytokines, prostaglandins and an increase in 2-microglobulin synthesis. Cellular contact activation is specifically inhibited by the monosaccharidel-fucose suggesting that dialysis membrane associatedl-fucose residues are involved in leukocyte activation. In this study we have detected and quantitatedl-fucose on commercially-available cellulose dialysis membranes using two approaches. A sensitive enzymatic fluorescence assay detectedl-fucose after acid hydrolysis of flat sheet membranes. Values ranged from 79.3±3.6 to 90.2±5.0 pmol cm–2 for Hemophan® or Cuprophan® respectively. Enzymatic cleavage of terminal -l-fucopyranoses with -l-fucosidase yielded 7.7±3.3 pmoll-fucose per cm2 for Cuprophan. Enzymatic hydrolysis of the synthetic polymer membranes AN-69 and PC-PE did not yield detectable amounts ofl-fucose. In a second approach, binding of the fucose specific lectins ofLotus tetragonolobus andUlex europaeus (UEAI) demonstrated the presence of biologically accessiblel-fucose on the surface of cellulose membranes. Specific binding was observed with Cuprophan®, and up to 2.6±0.3 pmoll-fucose per cm2 was calculated to be present from Langmuir-type adsorption isotherms. The data presented are in line with the hypothesis that surface-associatedl-fucose residues on cellulose dialysis membranes participate in leukocyte contact activation.  相似文献   
3.
Surface modification methods can optimise the biocompatibility or the specificity of biointeraction of a biosensor or medical device. With only the surface modified, the manufacture and implantation protocol remain unchanged. This review article summarises some of the chemical, surface analytical and biological challenges associated with surface modification of biosensors and biomedical devices.  相似文献   
4.
Fragments of cancellous and cortical bone from human maxilla and mandible were cultured by the explant technique. Cells isolated by trypsinization of primary cultures were characterized as osteoblasts on the basis of intracellular alkaline phosphatase activity, the constituents of the extracellular matrix, and response to human parathormone (PTH). In culture, the osteoblasts often gave rise to superposed clumps of large cells whose cytoplasm contained endoplasmic reticulum, numerous mitochondria, vacuoles, and a dense network of intermediate filaments, often at the level of the plasma membrane. In the presence of vitamin C and 1,25-dihydroxyvitamin D3, the osteoblasts produced an extracellular matrix composed of collagen type I and various non-collagenous proteins, including osteocalcin. Biochemical test results were comparable to those reported for osteoblasts of other origins (rat calvaria, human iliac crest), and namely elevated intracellular alkaline phosphatase activity and cAMP accumulation in response to stimulation by human PTH (1–34). Osteoblasts isolated in this manner were cultured in the presence of pure titanium disks to determine the effects of exposure to this metal. Electron microscopy revealed few significant differences in cell growth and specific enzyme activity compared to control osteoblasts grown on plastic dishes, reflecting the excellent biologic and biochemical relationship between the osteoblasts and pure titanium. This experimental system thus appears suitable for biocompatibility studies, and in particular, evaluation of dental implants.  相似文献   
5.
Cell culture toxicity testing methods were modified and applied to the development of implantable glucose microsensors, and positive and negative control materials suitable for the microsensor assessment were established. The location, source and degree of the toxic effect in a multi-component biosensor was spatially visualized with cell monolayers. A freshly prepared sensor showed moderate toxicity, mainly as a result of the presence of glutaraldehyde and the residual solvents in the polymer layers. However, it was possible to reduce the toxicity by removing the leachable toxic substances through extraction in phosphate, buffer, and a non-toxic sensor was readily obtained.  相似文献   
6.
The foreign body reaction occurs when a synthetic surface is introduced to the body. It is characterized by adsorption of blood proteins and the subsequent attachment and activation of platelets, monocyte/macrophage adhesion, and inflammatory cell signaling events, leading to post-procedural complications. The Chandler Loop Apparatus is an experimental system that allows researchers to study the molecular and cellular interactions that occur when large volumes of blood are perfused over polymeric conduits. To that end, this apparatus has been used as an ex vivo model allowing the assessment of the anti-inflammatory properties of various polymer surface modifications. Our laboratory has shown that blood conduits, covalently modified via photoactivation chemistry with recombinant CD47, can confer biocompatibility to polymeric surfaces. Appending CD47 to polymeric surfaces could be an effective means to promote the efficacy of polymeric blood conduits. Herein is the methodology detailing the photoactivation chemistry used to append recombinant CD47 to clinically relevant polymeric blood conduits and the use of the Chandler Loop as an ex vivo experimental model to examine blood interactions with the CD47 modified and control conduits.  相似文献   
7.
Widespread use of cerium oxide (CeO2) nanoparticles (NPs) is found in almost all areas of research due to their distinctive properties. CeO2 NPs synthesized via green chemistry have been characterized for antioxidant, phytochemical, and biological potential. Physical characterization through scanning electron microscopy, XRD, and TGA showed that the NPs are circular in shape, 20‐25 nm in size, and stable in a wide range of temperature. NPs display significant antioxidant (32.7% free radical scavenging activity) and antileishmanial (IC50 48 µg mL?1) properties. In vitro toxicity tested against lymphocytes verified that NPs are biocompatible (99.38% viability of lymphocytes at 2.5 μg mL?1). In vivo toxicity experiments showed no harmful effects on rat serum chemistry and histology of various organs and did not even change the concentration of antioxidative enzymes, total protein contents, lipid peroxidation, and nitrosative stress. These observations are in line with the statement that plant‐based synthesis of CeO2 NPs lessens or nullifies in vitro and in vivo toxicity and hence CeO2 NPs are regarded as a safe and biocompatible material to be used in drug delivery.  相似文献   
8.
Micelles have demonstrated an excellent ability to deliver several different types of therapeutic agents, including chemotherapy drugs, proteins, small‐interfering RNA and DNA, into tumor cells. Cationic micelles, comprising self‐assemblies of amphiphilic cationic polymers, have exhibited tremendous promise with respect to the delivery of therapy genes and gene transfection. To date, research in the field has focused on achieving an enhanced stability of the micellar assembly, prolonged circulation times and controlled release of the gene. This review focuses on the micelles as a nanosized carrier system for gene delivery, the system‐related modifications for cytoplasm release, stability and biocompatibility, and clinic trials. In accordance with the development of synthetic chemistry and self‐assembly technology, the structures and functionalities of micelles can be precisely controlled, and hence the synthetic micelles not only efficiently condense DNA, but also facilitate DNA endocytosis, endosomal escape, DNA uptake and nuclear transport, resulting in a comparable gene transfection of virus.  相似文献   
9.
Corneal transplantation by full‐thickness penetrating keratoplasty with human donor tissue is a widely accepted treatment for damaged or diseased corneas. Although corneal transplantation has a high success rate, a shortage of high‐quality donor tissue is a considerable limitation. Therefore, bioengineered corneas could be an effective solution for this limitation, and a decellularized extracellular matrix comprises a promising scaffold for their fabrication. In this study, three‐dimensional bioprinted decellularized collagen sheets were implanted into the stromal layer of the cornea of five rabbits. We performed in vivo noninvasive monitoring of the rabbit corneas using swept‐source optical coherence tomography (OCT) after implanting the collagen sheets. Anterior segment OCT images and averaged amplitude‐scans were acquired biweekly to monitor corneal thickness after implantation for 1 month. The averaged cornea thickness in the control images was 430.3 ± 5.9 μm, while the averaged thickness after corneal implantation was 598.5 ± 11.8 μm and 564.5 ± 12.5 μm at 2 and 4 weeks, respectively. The corneal thickness reduction of 34 μm confirmed the biocompatibility through the image analysis of the depth‐intensity profile base. Moreover, hematoxylin and eosin staining supported the biocompatibility evaluation of the bioprinted decellularized collagen sheet implantation. Hence, the developed bioprinted decellularized collagen sheets could become an alternative solution to human corneal donor tissue, and the proposed image analysis procedure could be beneficial to confirm the success of the surgery.   相似文献   
10.
Microparticles and nanoparticles for drug delivery   总被引:3,自引:0,他引:3  
Particulate drug delivery systems have become important in experimental pharmaceutics and clinical medicine. The distinction is often made between micro- and nanoparticles, being particles with dimensions best described in micrometers and nanometers respectively. That size difference entails real differences at many levels, from formulation to in vivo usage. Here I will discuss those differences and provide examples of applications, for local and systemic drug delivery. I will outline a number of challenges of interest in particulate drug delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号