首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   39篇
  国内免费   91篇
  2024年   2篇
  2023年   16篇
  2022年   10篇
  2021年   13篇
  2020年   24篇
  2019年   25篇
  2018年   15篇
  2017年   23篇
  2016年   22篇
  2015年   23篇
  2014年   14篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  1982年   3篇
排序方式: 共有207条查询结果,搜索用时 31 毫秒
1.
土壤中镉(Cd)含量的超标导致了土壤生态系统的恶性发展,微生物作为土壤中的常见组分之一在缓解土壤镉污染中展现出巨大潜力。本文总结了微生物、微生物-植物和微生物-生物炭在镉污染土壤修复中的应用并阐述了相关的作用机理。芽孢杆菌(Bacillus)、不动杆菌(Acinetobacter)、荧光假单胞菌(Pseudomonas fluorescence)、丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)等微生物可以通过吸附、矿化、沉淀、溶解等方式改变镉的生物有效性,从而达到缓解镉污染的目的。pH值、温度、微生物生物量、镉初始浓度以及时间等对微生物降低镉的生物有效性方面有着显著的影响。假单胞菌、伯克霍尔德菌(Burkholderia)、黄杆菌(flavobacterium)等微生物可以通过促生、活化等作用促进超富集植物对Cd2+的吸收。生物炭作为一种土壤改良剂,其独有的理化性质可以作为微生物的庇护所。微生物-生物炭联合使用与单用生物炭相比可以进一步促进镉的残渣态的增加,降低土壤中有效态的比例。  相似文献   
2.
Existing studies suggest that biochar application can reduce soil nitrous oxide (N2O) emissions, mainly based on short-term results. However, it remains unclear what the effects (i.e., legacy effects) and underlying mechanisms are on N2O emissions after many years of a single application of biochar. Here, we collected intact soil columns from plots without and with biochar application in a subtropical tea plantation 7 years ago for an incubation experiment. We used the N2O isotopocule analysis combined with ammonia oxidizer-specific inhibitors and molecular biology approaches to investigate how the legacy effect of biochar affected soil N2O emissions. Results showed that the soil in the presence of biochar had lower N2O emissions than the control albeit statistically insignificant. The legacy effect of biochar in decreasing N2O emissions may be attributed to the reduced effectiveness of the soil substrate, nitrification and denitrification activities, and the promotion of the further reduction of N2O. The legacy effect of biochar reduced the relative contribution of nitrifier denitrification/bacterial denitrification, nitrification-related N2O production, and the relative abundance of several microorganisms involved in the nitrogen cycle. Our global meta-analysis also showed that the reduction of N2O by biochar increased with increasing application rate but diminished and possibly even reversed with increasing experimental time. In conclusion, our findings suggest that the abatement capacity of biochar on soil N2O emissions may weaken over time after biochar application, but this remains under further investigation.  相似文献   
3.
Little of the historical extent of tallgrass prairie ecosystems remains in North America, and therefore there is strong interest in restoring prairies. However, slow‐growing prairie plants are initially weak competitors with the fast‐growing yet short‐lived weedy plant species that are typically abundant in recently established prairie restorations. One way to aid establishment of slow‐growing plant species is through adding soil amendments to prairie restorations before planting. Arbuscular mycorrhizal (AM) fungi form mutualisms with the roots of most terrestrial plants and are particularly important for the growth of slow‐growing prairie plant species. As prairie ecosystems are adapted to fires that leave biochar (charred organic material) in the soil, adding biochar as well as AM fungal strains from undisturbed remnant prairies into the soil of prairie restorations may improve restoration outcomes. Here, we test this prediction during the first four growing seasons of a prairie restoration. When prairie plant seedlings were inoculated prior to planting into the field with AM fungi derived from remnant prairies, that one‐time inoculation significantly increased growth of five of the nine tested plant species through at least two growing seasons. This long‐term benefit of AM fungal inoculation was unaffected by biochar addition to the soil. Biochar application rates of at least 10 tons/ha significantly decreased Coreopsis tripteris growth but acted synergistically with AM fungal inoculation to significantly improve survival of Schizachyrium scoparium. Overall, inoculation with native AM fungi can help promote prairie plant establishment, but concomitant use of biochar soil amendments had relatively little effect.  相似文献   
4.
本研究于2019年7月—2020年7月在浙江省杭州市典型毛竹林布置野外控制实验,采用静态箱-气相色谱法测定毛竹林土壤N2O通量,分析生物质炭(10 t·hm-2)、氮沉降(60 kg N·hm-2·a-1)、生物质炭+氮沉降混合处理对土壤N2O通量的影响,并探讨了土壤N2O通量与环境因子的关系。结果表明: 与对照相比,氮沉降处理使毛竹林土壤N2O年累积排放量增加了14.6%,而施用生物质炭及其与氮沉降混合处理则分别降低了20.8%和10.6%。相关分析表明,在所有处理下,毛竹林土壤N2O排放速率与土壤温度、硝态氮含量、脲酶和蛋白酶活性之间均呈极显著相关,与土壤铵态氮含量均呈显著相关。在氮沉降背景下,施用生物质炭对毛竹林土壤N2O通量仍具有显著的减排效应。  相似文献   
5.
The study explores the adsorption potential of Chrysanthemum indicum biomass for nickel ion removal from aqueous solution. C. indicum flowers in raw (CIF-I) and biochar (CIF-II) forms were used as adsorbents in this study. Batch experiments were conducted to ascertain the optimum conditions of solution pH, adsorbent dosage, contact time, and temperature for varying initial Ni(II) ion concentrations. Surface area, surface morphology, and functionality of the adsorbents were characterized by Brunauer, Emmett, and Teller (BET) surface analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Adsorption kinetics were modeled using pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Bangham's, and Boyd's plot. The equilibrium data were modeled using Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D-R) isotherm models. Experimental data provided the best fit to pseudo-second-order kinetic model and Langmuir isotherm model for the adsorption of Ni(II) ion on both CIF-I and CIF-II with maximum adsorption capacities of 23.97 and 44.02 mg g?1, respectively. Thermodynamic analysis of the data proved the process to be spontaneous and endothermic in nature. Desorption studies were conducted to evaluate the possibility of reusing the adsorbents. Findings of the present study provide substantial evidence for the use of C. indicum flower as an eco-friendly and potential adsorbent for the removal of Ni(II) ions from aqueous solution.  相似文献   
6.
Silicon (Si) is beneficial to plants since it increases photosynthetic efficiency, and alleviates biotic and abiotic stresses. In the most highly weathered and desilicated soils, plant phytoliths make up the reservoir of bioavailable Si. The regular removal of crop residues, however, substantially decreases this pool. Si supply may therefore be required to sustain continuous cropping. Available Si fertilizers are costly and usually poor in soluble Si. Biochar produced from the pyrolysis of phytolith‐rich biomass is thus a promising alternative Si source for plants. Taking into account the challenges of increasing food demand and environmental concerns, we evaluate the global potential of biochar produced from major crop residues and manures in terms of phytogenic Si (PhSi) supply. Crop residues contribute to 80% of the global production of biomass dry matter (8,201 Tg/year) of which 3,137 Tg/year are potentially available after pyrolysis, giving a potential application rate of 1.7 T ha?1 year?1 for highly weathered soils in the tropics. The potential PhSi supply from crop biochar amounts to 102 Tg Si/year. On its own, rice straws produce 57.7 Tg PhSi/year, accounting for 56.6% of the potential annual PhSi production. The Si release from crop biochar depends on inter altere feedstock type, pyrolysis temperature, soil pH, and buffer capacity. Furthermore, the amplitude of plant Si uptake and mineralomass depends on plant species, soil properties, and processes. These factors interact and can exert a decisive influence on the effectiveness of phytolithic biochar in releasing Si into highly weathered soils. We conclude that the use of phytolithic biochar as a Si fertilizer offers undeniable potential to mitigate desilication and to enhance Si ecological services due to soil weathering and biomass removal. This potential must be explored, as well as the conditions for using biochar in the field.  相似文献   
7.
China is under pressure to improve its agricultural productivity to keep up with the demands of a growing population with increasingly resource‐intensive diets. This productivity improvement must occur against a backdrop of carbon intensity reduction targets, and a highly fragmented, nutrient‐inefficient farming system. Moreover, the Chinese government increasingly recognizes the need to rationalize the management of the 800 million tonnes of agricultural crop straw that China produces each year, up to 40% of which is burned in‐field as a waste. Biochar produced from these residues and applied to land could contribute to China's agricultural productivity, resource use efficiency and carbon reduction goals. However competing uses for China's straw residues are rapidly emerging, particularly from bioenergy generation. Therefore it is important to understand the relative economic viability and carbon abatement potential of directing agricultural residues to biochar rather than bioenergy. Using cost‐benefit analysis (CBA) and life‐cycle analysis (LCA), this paper therefore compares the economic viability and carbon abatement potential of biochar production via pyrolysis, with that of bioenergy production via briquetting and gasification. Straw reincorporation and in‐field straw burning are used as baseline scenarios. We find that briquetting straw for heat energy is the most cost‐effective carbon abatement technology, requiring a subsidy of $7 MgCO2e?1 abated. However China's current bioelectricity subsidy scheme makes gasification (NPV $12.6 million) more financially attractive for investors than both briquetting (NPV $7.34 million), and pyrolysis ($?1.84 million). The direct carbon abatement potential of pyrolysis (1.06 MgCO2e per odt straw) is also lower than that of briquetting (1.35 MgCO2e per odt straw) and gasification (1.16 MgCO2e per odt straw). However indirect carbon abatement processes arising from biochar application could significantly improve the carbon abatement potential of the pyrolysis scenario. Likewise, increasing the agronomic value of biochar is essential for the pyrolysis scenario to compete as an economically viable, cost‐effective mitigation technology.  相似文献   
8.
This article addresses biochar from a legal point of view. It analyses different policies and regulations from a European (Flemish) point of view and provides a first and general insight in what potential legal constraints the development of a biochar industry might face and what opportunities lie ahead. This is due to the fact that biochar is a recent product and a lot of scientific uncertainty still exists regarding the consequences of its application. From the analysis it appears a multitude of policies and legislative measures influence the development of the biochar industry. Hence, it is important that all these policies and legislative measures are analyzed in an appropriate manner. Moreover, considerable lobbying, negotiating and cooperation between different disciplines (legal, scientific, economical, etc.) will be required so as to develop a feasible and safe biochar framework.  相似文献   
9.
Biochar amendments to soils had aroused much interest for having potential for greenhouse gas mitigation, soil improvement and increased crop productivity. However, little attention had been focused on the influence of biochar amendments on herbivorous insect pests. This study investigated whether a biochar amendment affected developmental and reproductive performances of the rice brown planthopper (Nilaparvata lugens) feeding on rice plants. The biochar from the pyrolysis of wheat straw was used for treatments of soils (from a fallow rice field), and the treated soils were applied to grow rice seedlings in small vials, in which Nlugens life history was observed. The nymphal development time was delayed and nymph‐to‐adult survival decreased with a high level of 200 g/kg biochar application. Herbivore lifetime fecundity decreased with increasing amounts of biochar, from 256 eggs under the control down to 69 eggs under the high level (200 g/kg) of biochar application. Egg‐hatching rate significantly decreased at the highest biochar level (200 g/kg), compared to the other lower biochar levels. Our results suggest that biochar amendment to rice fields may have negative impacts on the rice brown planthoppers when applied at level of 200 g/kg of soil.  相似文献   
10.
Lacking systematic evaluations in soil quality and microbial community recovery after different amendments addition limits optimization of amendments combination in coal mine soils. We performed a short‐term incubation experiment with a varying temperature over 12 weeks to assess the effects of three amendments (biochar: C; nitrogen fertilizer at three levels: N‐N1~N3; microbial agent at two levels: M‐M1~M2) based on C/N ratio (regulated by biochar and N level: 35:1, 25:1, 12.5:1) on mine soil properties and microbial community in the Qilian Mountains, China. Over the incubation period, soil pH and MBC/MBN were significantly lower than unamended treatment in N addition and C + M + N treatments, respectively. Soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), microbial biomass carbon (MBC), and nitrogen (MBN) contents increased significantly in all amended treatments (p < .001). Higher AP, AK, MBC, MBN, and lower MBC/MBN were observed in N2‐treated soil (corresponding to C/N ratio of 25:1). Meanwhile, N2‐treated soil significantly increased species richness and diversity of soil bacterial community (p < .05). Principal coordinate analysis further showed that soil bacterial community compositions were significantly separated by N level. C‐M‐N treatments significantly increased the relative abundance (>1%) of the bacterial phyla Bacteroidetes and Firmicutes, and decreased the relative abundance of fungal phyla Chytridiomycota (p < .05). Redundancy analysis illustrated the importance of soil nutrients in explaining variability in bacterial community composition (74.73%) than fungal composition (35.0%). Our results indicated that N addition based on biochar and M can improve soil quality by neutralizing soil pH and increasing soil nutrient contents in short‐term, and the appropriate C/N ratio (25:1) can better promote microbial mass, richness, and diversity of soil bacterial community. Our study provided a new insight for achieving restoration of damaged habitats by changing microbial structure, diversity, and mass by regulating C/N ratio of amendments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号