首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2023年   1篇
  2017年   2篇
  2016年   3篇
  2014年   3篇
  2013年   4篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2004年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
Plasmodium of Physarum polycephalum (P. polycephalum) is a large single cell visible by an unaided eye. It shows sophisticated behavioural traits in foraging for nutrients and developing an optimal transport network of protoplasmic tubes spanning sources of nutrients. When placed in an environment with distributed sources of nutrients the cell ‘computes’ an optimal graph spanning the nutrients by growing a network of protoplasmic tubes. P. polycephalum imitates development of man-made transport networks of a country when configuration of nutrients represents major urban areas. We employed this feature of the slime mould to imitate mexican migration to USA. The Mexican migration to USA is the World's largest migration system. We bio-physically imitated the migration using slime mould P. polycephalum. In laboratory experiments with 3D Nylon terrains of USA we imitated development of migratory routes from Mexico-USA border to ten urban areas with high concentration of Mexican migrants. From results of laboratory experiments we extracted topologies of migratory routes, and highlighted a role of elevations in shaping the human movement networks.  相似文献   
2.
Maximum Likelihood (ML) method has an excellent performance for Direction-Of-Arrival (DOA) estimation, but a multidimensional nonlinear solution search is required which complicates the computation and prevents the method from practical use. To reduce the high computational burden of ML method and make it more suitable to engineering applications, we apply the Artificial Bee Colony (ABC) algorithm to maximize the likelihood function for DOA estimation. As a recently proposed bio-inspired computing algorithm, ABC algorithm is originally used to optimize multivariable functions by imitating the behavior of bee colony finding excellent nectar sources in the nature environment. It offers an excellent alternative to the conventional methods in ML-DOA estimation. The performance of ABC-based ML and other popular meta-heuristic-based ML methods for DOA estimation are compared for various scenarios of convergence, Signal-to-Noise Ratio (SNR), and number of iterations. The computation loads of ABC-based ML and the conventional ML methods for DOA estimation are also investigated. Simulation results demonstrate that the proposed ABC based method is more efficient in computation and statistical performance than other ML-based DOA estimation methods.  相似文献   
3.
4.
Electronic systems are vulnerable in electromagnetic interference environment. Although many solutions are adopted to solve this problem, for example shielding, filtering and grounding, noise is still introduced into the circuit inevitably. What impresses us is the biological nervous system with a vital property of robustness in noisy environment. Some mechanisms, such as neuron population coding, degeneracy and parallel distributed processing, are believed to partly explain how the nervous system counters the noise and component failure. This paper proposes a novel concept of bio-inspired electromagnetic protec- tion making reference to the characteristic of neural information processing. A bionic model is presented here to mimic neuron populations to transform the input signal into neural pulse signal. In the proposed model, neuron provides a dynamic feedback to the adjacent one according to the concept of synaptic plasticity. A simple neural circuitry is designed to verify the rationality of the bio-inspired model for electromagnetic protection. The experiment results display that bio-inspired electromagnetic pro- tection model has more power to counter the interference and component failure.  相似文献   
5.
6.
The present study evaluates the potential of a bio-inspired pulsation damper in a vane pump used in mobile hydraulic applications.Pressure pulsations caused by such positive displacement pumps can lead to malfunctions and noise in a hydraulic system.A common measure to reduce pressure pulsations is the integration of pressure pulsation dampers downstream of the pump.This type of damping measure can also be found in biology as e.g.in the human blood circulatory system.Such working principles found in living organisms offer a high potential for a biomimetic transfer into technical applications.The newly developed bio-inspired damper consists of cellular rubbers with non-linear viscoelastic material properties.In order to evaluate the new damping method,pressure pulsations were measured at two different back pressures and at a wide engine speed range of the vane pump.For further assessment,different setups,varying the stiffness of the cellular rubber materials and the damper volume,were tested.Within the tested back pressures,the pressure pulsations could be reduced by up to 40%.The developed integrated pulsation damper offers a high potential to dampen pressure pulsations of positive displacement pumps used in mobile hydraulic applications operating below 10 bar.  相似文献   
7.
Chemical fungicides have been instrumental in protecting crops from fungal diseases. However, increasing fungal resistance to many of the single-site chemical fungicides calls for the development of new antifungal agents with novel modes of action (MoA). The sequence-divergent cysteine-rich antifungal defensins with multisite MoA are promising starting templates for design of novel peptide-based fungicides. Here, we experimentally tested such a set of 17-amino-acid peptides containing the γ-core motif of the antifungal plant defensin MtDef4. These designed peptides exhibited antifungal properties different from those of MtDef4. Focused analysis of a lead peptide, GMA4CG_V6, showed that it was a random coil in solution with little or no secondary structure elements. Additionally, it exhibited potent cation-tolerant antifungal activity against the plant fungal pathogen Botrytis cinerea, the causal agent of grey mould disease in fruits and vegetables. Its multisite MoA involved localization predominantly to the plasma membrane, permeabilization of the plasma membrane, rapid internalization into the vacuole and cytoplasm, and affinity for the bioactive phosphoinositides phosphatidylinositol 3-phosphate (PI3P), PI4P, and PI5P. The sequence motif RRRW was identified as a major determinant of the antifungal activity of this peptide. While topical spray application of GMA4CG_V6 on Nicotiana benthamiana and tomato plants provided preventive and curative suppression of grey mould disease symptoms, the peptide was not internalized into plant cells. Our findings open the possibility that truncated and modified defensin-derived peptides containing the γ-core sequence could serve as promising candidates for further development of bio-inspired fungicides.  相似文献   
8.
##正## A flexible hingeless control surface model was proposed for motion control of Underwater Vehicles (UVs),which is inspiredby the flexible bending control surfaces of underwater creatures,such as fish and squid.Computational Fluid Dynamics(CFD) simulation demonstrates that,in comparison with the hinged or rigid control surface,the proposed flexible bendingcontrol surface can suppress the flow separation so as to improve the turning performance.A prototype of the flexible controlsurface was fabricated,in which Shape Memory Alloy (SMA) wires were selected as the actuators.The elastic energy storageand exchange mechanism was incorporated into the actuation of the control surface to improve the efficiency.Thermal analysisof SMA wires was performed to find proper actuating condition.Open-loop bending experiments were carried out.The resultsshow that the proposed control surface can achieve the maximum bending angle of 104°.Moreover,the power and energyconsumption under different pulse conditions were compared.  相似文献   
9.
Biology has been a brilliant teacher and a precious textbook to man-made construction for thousands of years, because it allows one to learn and be inspired by nature's remarkable and efficient structural systems. However, the emerging biomimetic studies have been of increasing interest for civil engineering design only in the past two decades. Bridge design is one of aspects on structural engineering of biomimeties that offers an enormous potential for inspiration in various aspects, such as the ge- ometry, structure, mechanism, energy use and the intelligence. Recently built bridges and design proposals in which biological systems have produced a range of inspiration are reviewed in this paper. Multidisciplinary cooperation is discussed for the implementation of bio-inspired methods in future design. A case study about using bio-inspired strategy is trying to present a problem-solving approach, yet further cooperation is still needed to utilize biomimetie studies for design inspiration. This paper aims to call a close multidisciplinary collaboration that promotes engineers to build more sustainable and smart structural systems for bridges in the 21 st century.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号