首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   717篇
  免费   20篇
  国内免费   2篇
  739篇
  2023年   1篇
  2022年   4篇
  2021年   13篇
  2020年   6篇
  2019年   15篇
  2018年   8篇
  2017年   4篇
  2016年   7篇
  2015年   22篇
  2014年   26篇
  2013年   38篇
  2012年   11篇
  2011年   6篇
  2010年   29篇
  2009年   41篇
  2008年   35篇
  2007年   33篇
  2006年   30篇
  2005年   25篇
  2004年   25篇
  2003年   21篇
  2002年   15篇
  2001年   9篇
  2000年   9篇
  1999年   9篇
  1998年   13篇
  1997年   11篇
  1996年   9篇
  1995年   12篇
  1994年   6篇
  1993年   13篇
  1992年   13篇
  1991年   7篇
  1990年   6篇
  1989年   12篇
  1988年   10篇
  1987年   10篇
  1986年   6篇
  1985年   11篇
  1984年   36篇
  1983年   32篇
  1982年   34篇
  1981年   26篇
  1980年   17篇
  1979年   7篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
排序方式: 共有739条查询结果,搜索用时 15 毫秒
1.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
2.
The kinetics of the electrostatically induced phase transition of dimyristoyl phosphatidic acid bilayers was followed using the stopped-flow technique. The phase transition was triggered by a fast change in the pH or the magnesium ion concentration and followed by recording the time dependence of the absorbance. When the phase transition was induced by a pH jump the time course of the absorbance could be described by two exponentials, their time constants displaying the for cooperative processes characteristic maximum at the transition midpoint. The time constants are in the 10 and 100 ms range for the H+ triggered transition from the fluid to the ordered state. A third slower process shows no appreciable temperature dependence and is probably caused by vesicle aggregation. For the OH--induced transition fron the ordered to the fluid state the time constants are in the 100 and 1000 ms range. The fluid-ordered transition could also be triggered by addition of magnesium ions. Of the several observed processes only the fastest in the 10–100 ms time range could definitely be assigned to the fluid-ordered transition while the others are due to aggregation phenomena. The experimental data were compared with results obtained from pressure jump experiments and could be interpreted on the basis of theories for non-equilibrium relaxation.  相似文献   
3.
The regulatory protein collybistin (CB) recruits the receptor-scaffolding protein gephyrin to mammalian inhibitory glycinergic and GABAergic postsynaptic membranes in nerve cells. CB is tethered to the membrane via phosphoinositides. We developed an in vitro assay based on solid-supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes doped with different phosphoinositides on silicon/silicon dioxide substrates to quantify the binding of various CB2 constructs using reflectometric interference spectroscopy. Based on adsorption isotherms, we obtained dissociation constants and binding capacities of the membranes. Our results show that full-length CB2 harboring the N-terminal Src homology 3 (SH3) domain (CB2SH3+) adopts a closed and autoinhibited conformation that largely prevents membrane binding. This autoinhibition is relieved upon introduction of the W24A/E262A mutation, which conformationally “opens” CB2SH3+ and allows the pleckstrin homology domain to properly bind lipids depending on the phosphoinositide species with a preference for phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate. This type of membrane tethering under the control of the release of the SH3 domain of CB is essential for regulating gephyrin clustering.  相似文献   
4.
A model membrane with a polypeptide alpha-helix inserted has been simulated by molecular dynamics at a temperature well above the gel/liquid crystalline phase transition temperature. Order parameters of the lipids and other equilibrium and dynamic quantities have been calculated. Three systems, polyglycine constrained into an alphahelical configuration, glycophorin with similarly conformationally constrained backbone and finally glycophorin free to change its backbone conformation, have been studied. In all cases there was an ordering of the chains close to the helix. This effect was, however, much smaller for glycophorin with its rather bulky side chains than for polyglycine. The dynamics of the lipids were affected by the neighbouring helix, not drastically however. Lateral diffusion and reorientational time correlations of lipids close to the helix were slower than for the bulk ones, but not more than two or three times. Thus, we did not find any evidence of bound or frozen boundary lipids.  相似文献   
5.
Abstract Lipid bilayer experiments were performed with chromosome-encoded haemolysin of Escherichia coli . The addition of the toxin to the aqueous phase bathing lipid bilayer membranes of asolectin resulted in the formation of transient ion-permeable channels with two states at small transmembrane voltages. One is prestate (single-channel conductance 40 pS in 0.15 M KCl) of the open state, which had a single-channel conductance of 420 pS in 0.15 M KCl and a mean lifetime of 30 s. Membranes formed of pure lipids were rather inactive targets for this haemolysin. Experiments with different salts suggested that the haemolysin channel was highly cation-selective at neutral pH. The mobility sequence of the cations in the channel was similar if not identical to their mobility sequence in the aqueous phase. The single-channel data were consistent with a wide, water-filled channel with an estimated minimal diameter of about 1 nm. The pore-forming properties of chromosome-encoded haemolysin were compared with those of plasmid-encoded haemolysin. Both toxins share common features, oligomerize probably to form pores in lipid bilayer membranes. Both types of haemolysin channels have similar properties but different lifetimes.  相似文献   
6.
Summary A voltage-dependent anion-selective channel, VDAC, is found in outer mitochondrial membranes. VDAC's conductance is known to decrease as the transmembrane voltage is increased in either the positive or negative direction. Charged groups on the channel may be responsible for this voltage dependence by allowing the channel to respond to an applied electric field. If so, then neutralization of these charges would eliminate the voltage dependence. Channels in planar lipid bilayers which behaved normally at pH 6 lost much of their voltage dependence at high pH. Raising the pH reduced the steepness of the voltage dependence and raised the voltage needed to close half the channels. In contrast, the energy difference between the open and closed state in the absence of a field was changed very little by the elevated pH. The groups being titrated had an apparent pK of 10.6. From the pK and chemical modification, lysine epsilon amino groups are the most likely candidates responsible for VDAC's ability to respond to an applied electric field.  相似文献   
7.
The softening of wet lipid bilayer membranes during their gel-to-fluid first-order phase transition is studied by computer simulation of a family of two-dimensional microscopic interaction models. The models include a variable number, q, of lipid chain conformational states, where 2q10. Results are presented as functions of q and temperature for a number of bulk properties, such as internal energy, specific heat, and lateral compressibility. A quantitative account is given of the statistics of the lipid clusters which are found to form in the neighborhood of the transition. The occurrence of these clusters is related to the softening and the strong thermal density fluctuations which dominate the specific heat and the lateral compressibility for the high-q models. The cluster distributions and the fluctuations behave in a manner reminiscent of critical phenomena and percolation. The findings of long-lived metastable states and extremely slow relaxational behavior in the transition region are shown to be caused by the presence of intermediate lipid chain conformational states which kinetically stabilize the cluster distribution and the effective phase coexistence. This has as its macroscopic consequence that the first-order transition apperas as a continuous transition, as invariably observed in all experiments on uncharged lecithin bilayer membranes. The results also suggest an explanation of the non-horizontal isotherms of lipid monolayers. Possible implications of lipid bilayer softening and enhanced passive permeability for the functioning of biological membranes are discussed.Abbreviations PC phosphatidvlcholine - DMPC dimyristoyl PC - DPPC dipalmitoyl PC - ac alternating current - DSC differential scanning calorimetry - T m lipid gel-to-fluid phase transition temperature - TEMPO 2,2,6,6-tetramethylpiperidine-N-oxyl Supported by the Danish Natural Science Research Council and A/S De Danske Spritfabrikkers JubilæumslegatSupported in part by the NSERC of Canada and Le FCAC du Quebec  相似文献   
8.
The gel-to-fluid first-order melting transition of lipid bilayers is simulated by the use of a microscopic interaction model which includes a variable number of lipid-chain conformational states. The results suggest that the experimental observation of ‘continuous melting’ in pure wet lipid bilayers, rather than being ascribed to the presence of impurities, may be explained as a result of kinetically caused metastability of intermediate lipid-chain conformations.  相似文献   
9.
Proton-enhanced carbon-13 magnetic resonance measurements have been made of the natural abundance carbon-13 carbons in hydrated Lα phase dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) codispersed with cholesterol or with the polypeptide gramicidin A′. The carbonyl group spectrum consists of a superposition of two peaks derived from the two carbonyl sites within the lipid. In the Lα phase of DMPC both carbonyl sites contribute axially symmetric spectra, one with a chemical shift anisotropy of –29 ppm and the other with a chemical shift anisotropy of less than –5 ppm. The chemical shift anisotropy of the broader carbonyl resonance was found to increase with increasing cholesterol content. However, in DMPC dispersions with gramicidin A′, the chemical shift anisotropy of the broader carbonyl signal initially increased slightly from that of pure DMPC and then decreased with increasing concentrations of gramicidin A′. The width of the narrower spectral component was essentially unaltered by cholesterol or gramicidin A′. The presence of a narrow component at all concentrations of cholesterol or gramicidin A′ suggests that it is unlikely that any significant conformational changes have occurred at the carbonyl level of the bilayer. We propose that the major effect of cholesterol or gramicidin A′ is to alter the molecular order parameter, Smol, which reflects the range of angles through which the local molecular long axis of the phospholipid is tumbling.  相似文献   
10.
We present a method by which it is possible to describe the binding of fatty acids to phospholipid bilayers. Binding constants for oleic acid and a number of fatty acids used as spectroscopic probes are deduced from electrophoresis measurements. There is a large shift in pK value for the fatty acids on binding to the phospholipid bilayers, consistent with stronger binding of the uncharged form of the fatty acid. For dansylundecanoic acid, fluorescence titrations are consistent with the binding constants derived from the electrophoresis experiments. For 12-(9-anthroyloxy)stearic acid, fluorescence and electrophoresis data are inconsistent, and we attribute this to quenching of fluorescence at high molar ratios of 12-anthroylstearic acid to phospholipid in the bilayer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号