首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
It is demonstrated that mixtures of ditetradecyl- phosphatidylcholine or didodecyl-phoshatidylcholine and dihexyl- phosphatidylcholine in water form lyotropic liquid crystalline phases under similar conditions as previously reported for bicelles consisting of dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl- phosphatidylcholine (DHPC). The carboxy-ester bonds present in DMPC and DHPC are replaced by ether linkages in their alkyl analogs, which prevents acid- or base-catalyzed hydrolysis of these compounds. 15N-1H dipolar couplings measured for ubiquitin over the 2.3–10.4pH range indicate that this protein retains a backbone conformation which is very similar to its structure at pH 6.5 over this entire range.  相似文献   
2.
The structure and dynamics of the gastrointestinal peptide hormone motilin, consisting of 22 amino acid residues, have been studied in the presence of isotropic q=0.5 phospholipid bicelles. The NMR solution structure of the peptide in acidic bicelle solution was determined from 203 NOE-derived distance constraints and six backbone torsion angle constraints. Dynamic properties for the 13C-1H vector in Leu10 were determined for motilin specifically labeled with 13C at this position by analysis of multiple-field relaxation data. The structure reveals an ordered -helical conformation between Glu9 and Lys20. The N-terminus is also well structured with a turn resembling that of a classical -turn. The 13C dynamics clearly show that motilin tumbles slowly in solution, with a correlation time characteristic of a large object. It was also found that motilin has a large degree of local flexibility as compared with what has previously been reported in SDS micelles. The results show that motilin interacts with the bicelle, displaying motional properties of a peptide bound to a membrane. In comparison, motilin in neutral bicelles seems less structured and more flexible. This study shows that the small isotropic bicelles are well suited for use as membrane-mimetic for structural as well as dynamical investigations of membrane-bound peptides by high-resolution NMR.  相似文献   
3.
The Escherichia coli RecA protein triggers both DNA repair and mutagenesis in a process known as the SOS response. The 81-residue E. coli protein DinI inhibits activity of RecA in vivo. The solution structure of DinI has been determined by multidimensional triple resonance NMR spectroscopy, using restraints derived from two sets of residual dipolar couplings, obtained in bicelle and phage media, supplemented with J couplings and a moderate number of NOE restraints. DinI has an alpha/beta fold comprised of a three-stranded beta-sheet and two alpha-helices. The beta-sheet topology is unusual: the central strand is flanked by a parallel and an antiparallel strand and the sheet is remarkably flat. The structure of DinI shows that six negatively charged Glu and Asp residues on DinI's kinked C-terminal alpha-helix form an extended, negatively charged ridge. We propose that this ridge mimics the electrostatic character of the DNA phospodiester backbone, thereby enabling DinI to compete with single-stranded DNA for RecA binding. Biochemical data confirm that DinI is able to displace ssDNA from RecA.  相似文献   
4.
A mixture of dilauroyl phosphatidylcholine (DLPC) and 3-(cholamidopropyl)dimethylammonio-2-hydroxyl-1-propane sulfonate (CHAPSO) in water forms disc shaped bicelles that become ordered at high magnetic fields over a wide range of temperatures. As illustrated for the FK506 binding protein (FKBP), large residual dipolar couplings can be measured for proteins dissolved in low concentrations (5% w/v) of a DLPC/CHAPSO medium at a molar ratio of 4.2:1. This system is especially useful for measuring residual dipolar couplings for molecules that are only stable at low temperatures.  相似文献   
5.
Weak alignment of solute molecules with the magnetic field can be achieved in a dilute liquid crystalline medium, consisting of an aqueous mixture of dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl-phosphatidylcholine (DHPC). For a certain range of molar ratios, DMPC and DHPC can form large, disc-shaped particles, commonly referred to as bicelles (Sanders and Schwonek, 1992), which cooperatively align in the magnetic field and induce a small degree of alignment on asymmetrically shaped solute molecules. As a result, dipolar couplings between pairs of 1H, 13C or 15N nuclei are no longer averaged to zero by rotational diffusion and they can be readily measured, providing valuable structural information. The stability of these liquid crystals and the degree of alignment of the solute molecules depend strongly on experimental variables such as the DMPC:DHPC ratio and concentration, the preparation protocol of the DMPC/DHPC mixtures, as well as salt, temperature, and pH. The lower temperature limit for which the liquid crystalline phase is stable can be reduced to 20 °C by using a ternary mixture of DHPC, DMPC, and 1-myristoyl-2-myristoleoyl-sn-glycero-3-phosphocholine, or a binary mixture of DHPC and ditridecanoyl-phosphatidylcholine. These issues are discussed, with an emphasis on the use of the medium for obtaining weak alignment of biological macromolecules.  相似文献   
6.
In this study we investigated the dynamic behavior of the chimeric cell-penetrating peptide transportan in membrane-like environments using NMR. Backbone amide 15N spin relaxation was used to investigate the dynamics in two bicelles: neutral DMPC bicelles and partly negatively charged DMPG-containing bicelles. The structure of the peptide as judged from CD and chemical shifts is similar in the two cases. Both the overall motion as well as the local dynamics is, however, different in the two types of bicelles. The overall dynamics of the peptide is significantly slower in the partly negatively charged bicelle environment, as evidenced by longer global correlation times for all measured sites. The local motion, as judged from generalized order parameters, is for all sites in the peptide more restricted when bound to negatively charged bicelles than when bound to neutral bicelles (increase in S 2 is on average 0.11 ± 0.07). The slower dynamics of transportan in charged membrane model systems cause significant line broadening in the proton NMR spectrum, which in certain cases limits the observation of 1H signals for transportan when bound to the membrane. The effect of transportan on DMPC and DHPC motion in zwitterionic bicelles was also investigated, and the motion of both components in the bicelle was found to be affected.Electronic Supplementary Material Supplementary material is available for this article at http://dx.doi.org/10.1007/s10858-006-9008-y and is accessible for authorized users.  相似文献   
7.
8.
We have prepared and characterized a novel bicelle system composed of 1,2-di-O-dodecyl-sn-glycero-3-phos- phocholine (DIODPC) and 3-(chloramidopropyl)dimethylammonio-2-hydroxyl-1-propane sulfonate (CHAPSO). At the optimal DIODPC/CHAPSO molar ratio of 4.3:1, this medium becomes magnetically oriented from pH 6.5 down to pH 1.0. Unlike previously reported bicelle preparations, these bicelles are chemically stable at low pH and are capable of inducing protein alignment, as illustrated by the large residual dipolar couplings measured for rusticyanin from Thiobacillus ferrooxidans at pH 2.1. The DIODPC/CHAPSO system is particularly useful for measuring residual dipolar couplings of macromolecules that require very acidic conditions.  相似文献   
9.
The temperature dependence of the partition of a neuropeptide, substance P (SP), in isotropic (q = 0.5) bicelles was investigated by using pulsed field gradient NMR diffusion technique. The partition coefficient decreases as the temperature is increased from 295 to 325 K, indicating a favorable (negative) enthalpy change upon partitioning of the peptide. Thermodynamic analysis of the data shows that the partitioning of SP at 300 K is driven by the enthalpic term (ΔH) with the value of ? 4.03 kcal mol?1, while it is opposed by the entropic term (?TΔS) by approximately 1.28 kcal mol?1 with a small negative change in heat capacity (ΔCp). The enthalpy‐driven process for the partition of SP in bicelles is the same as in dodecylphosphocholine (DPC) micelles, however, the negative entropy change in bicelles of flat bilayer surface is in sharp contrast with the positive entropy change in DPC micelles of highly curved surface, indicating that the curvature of the membrane surface might play a significant role in the partitioning of peptides. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
10.
The chemokine stromal cell‐derived factor‐1 (SDF‐1/CXCL12) directs leukocyte migration, stem cell homing, and cancer metastasis through activation of CXCR4, which is also a coreceptor for T‐tropic HIV‐1. Recently, SDF‐1 was shown to play a protective role after myocardial infarction, and the protein is a candidate for development of new anti‐ischemic compounds. SDF‐1 is monomeric at nanomolar concentrations but binding partners promote self‐association at higher concentrations to form a typical CXC chemokine homodimer. Two NMR structures have been reported for the SDF‐1 monomer, but only one matches the conformation observed in a series of dimeric crystal structures. In the other model, the C‐terminal helix is tilted at an angle incompatible with SDF‐1 dimerization. Using a rat heart explant model for ischemia/reperfusion injury, we found that dimeric SDF‐1 exerts no cardioprotective effect, suggesting that the active species is monomeric. To resolve the discrepancy between existing models, we solved the NMR structure of the SDF‐1 monomer in different solution conditions. Irrespective of pH and buffer composition, the C‐terminal helix remains tilted at an angle with no evidence for the perpendicular arrangement. Furthermore, we find that phospholipid bicelles promote dimerization that necessarily shifts the helix to the perpendicular orientation, yielding dipolar couplings that are incompatible with the NOE distance constraints. We conclude that interactions with the alignment medium biased the previous structure, masking flexibility in the helix position that may be essential for the distinct functional properties of the SDF‐1 monomer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号