首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  国内免费   3篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
  2003年   6篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
We report here the locations of curved DNA in the human erythropoietin receptor gene. A total of 13 DNA bend sites were mapped by circular permutation assays, appearing at an average interval of 651.2+/-214.6 (S.D.) in the 8-kb region. The bend centers in these 13 bend sites were confirmed by oligonucleotide-based assays where most of these centers had bend angles higher than that shown by (AAACCGGGCC) x (A)20 and lower than that shown by (AAACCGGGCC)2 x (A)10. DNA curvature mapping by TRIF software, which is based on the distribution of dinucleotides, primarily AA and TT, provided a highly accurate prediction for the locations of the bend sites. They showed approximately 20 degrees to 40 degrees of bend angles demonstrated by the oligonucleotide assays and by computer analysis.  相似文献   
2.
Type-IIA topoisomerases consume ATP as they catalyse the interconversion of DNA topoisomers by transporting one DNA segment through a transient break in another. It remains unclear how their activity simplifies the topology of DNA below equilibrium values. Here we report that eukaryotic topoisomerase II narrows the thermal distribution of DNA supercoils, by mainly removing negative DNA crossings. Surprisingly, this asymmetry in supercoil removal is not due to deformation of the DNA before strand passage. Topoisomerase II neither bends nor alters the helical conformation of the interacting DNA. Rather, it appears to interact with a third DNA segment, in addition to the gated and the transported segments. Remarkably, the simultaneous interaction with three DNA segments accounts for the asymmetric removal of supercoils in relaxed DNA and gives a clue to how topoisomerase II simplifies the topology of DNA against the thermal drive.  相似文献   
3.
The three‐dimensional solution structure of harzianin HC IX, a peptaibol antibiotic isolated from the fungus Trichoderma harzianum, was determined using CD, homonuclear, and heteronuclear two‐dimensional nmr spectroscopy combined with molecular modeling. This 14‐residue peptide, Ac Aib1 Asn2 Leu3 Aib4 Pro5 Ala6 Ile7 Aib8 Pro9 Iva10 Leu11 Aib12 Pro13 Leuol14 (Aib, α‐aminoisobutyric acid; Iva, isovaline; Leuol, leucinol), is a main representative of a short‐sequence peptaibol class characterized by an acetylated N‐terminus, a C‐terminal amino alcohol, and the presence of three Aib‐L ‐Pro motifs at positions 4–5, 8–9, and 12–13, separated by two dipeptide units. In spite of a lower number of residues, compared to the 18/20‐residue peptaibols such as alamethicin, harzianin HC IX exhibits remarkable membrane‐perturbing properties. It interacts with phospholipid bilayers, increasing their permeability and forming voltage‐gated ion channels through a mechanism slightly differing from that proposed for alamethicin. Sequence‐specific 1H‐ and 13C‐nmr assignments and conformational nmr parameters (3JNHCαH coupling constants, quantitative nuclear Overhauser enhancement data, temperature coefficients of amide and carbonyl groups, NH–ND exchange rates) were obtained in methanol solution. Sixty structures were calculated based on 98 interproton distance restraints and 6 Φ dihedral angle restraints, using high temperature restrained molecular dynamics and energy minimization. Thirty‐seven out of the sixty generated structures were consistent with the nmr data and were convergent. The peptide backbone consists in a ribbon of overlapping β‐turns twisted into a continuous spiral from Asn2 to Leuol14 and forming a 26 Å long helix‐like structure. This structure is slightly amphipathic, with the three Aib–Pro motifs aligned on the less hydrophobic face of the spiral where the Asn2 side chain is also present, while the more hydrophobic bulky side chains of leucines, isoleucine, isovaline, and leucinol are located on the concave side. The repetitive (Xaa–Yaa–Aib–Pro) tetrapeptide subunit, making up the peptide sequence, is characterized by four sets of (Φ,Ψ) torsional angles, with the following mean values: Φi = −90°, Ψi = −27°; Φi+1 = −98°, Ψi+1 = −17°; Φi+2 = −49°, Ψi+2 = −50°; Φi+3 = −78°, Ψi+3 = +3°. We term this particular structure, specifically occurring in the case of (Xaa–Yaa–Aib–Pro)n sequences, the (Xaa–Yaa–Aib–Pro)‐β‐bend ribbon spiral. It is stabilized by 4 → 1 intramolecular hydrogen bonds and differs from both the canonical 310‐helix made of a succession of type III β‐turns and from the β‐bend ribbon spiral that has been described in the case of (Aib–Pro)n peptide segments. © 1999 John Wiley & Sons, Inc. Biopoly 50: 71–85, 1999  相似文献   
4.
Symmetry, and in particular point group symmetry, is generally the rule for the global arrangement between subunits in homodimeric and other oligomeric proteins. The structures of fragments of tropomyosin and bovine fibrinogen are recently published examples, however, of asymmetric interactions between chemically identical chains. Their departures from strict twofold symmetry are based on simple and generalizable chemical designs, but were not anticipated prior to their structure determinations. The current review aims to improve our understanding of the structural principles and functional consequences of asymmetric interactions in proteins. Here, a survey of >100 diverse homodimers has focused on the structures immediately adjacent to the twofold axis. Five regular frameworks in alpha-helical coiled coils and antiparallel beta-sheets accommodate many of the twofold symmetric axes. On the basis of these frameworks, certain sequence motifs can break symmetry in geometrically defined manners. In antiparallel beta-sheets, these asymmetries include register slips between strands of repeating residues and the adoption of different side-chain rotamers to avoid steric clashes of bulky residues. In parallel coiled coils, an axial stagger between the alpha-helices is produced by clusters of core alanines. Such simple designs lead to a basic understanding of the functions of diverse proteins. These functions include regulation of muscle contraction by tropomyosin, blood clot formation by fibrin, half-of-site reactivity of caspase-9, and adaptive protein recognition in the matrix metalloproteinase MMP9. Moreover, asymmetry between chemically identical subunits, by producing multiple equally stable conformations, leads to unique dynamic and self-assembly properties.  相似文献   
5.
Helical parameters displayed on a Ramachandran plot allow peptide structures with successive residues having identical main chain conformations to be studied. We investigate repeating dipeptide main chain conformations and present Ramachandran plots encompassing the range of possible structures. Repeating dipeptides fall into the categories: rings, ribbons, and helices. Partial rings occur in the form of “nests” and “catgrips”; many nests are bridged by an oxygen atom hydrogen bonding to the main chain NH groups of alternate residues, an interaction optimized by the ring structure of the nest. A novel recurring feature is identified that we name unpleated β, often situated at the ends of a β‐sheet strand. Some are partial rings causing the polypeptide to curve gently away from the sheet; some are straight. They lack β‐pleat and almost all incorporate a glycine. An example is the first glycine in the GxxxxGK motif of P‐loop proteins. Ribbons in repeating dipeptides can be either flat, as seen in repeated type II and type II′ β‐turns, or twisted, as in multiple type I and type I′ β‐turns. Hexa‐ and octa‐peptides in such twisted ribbons occur frequently in proteins, predominantly with type I β‐turns, and are the same as the “β‐bend ribbons” hitherto identified only in short peptides. One is seen in the GTPase‐activating protein for Rho in the active, but not the inactive, form of the enzyme. It forms a β‐bend ribbon, which incorporates the catalytic arginine, allowing its side chain guanidino group to approach the active site and enhance enzyme activity. Proteins 2014; 82:230–239. © 2013 Wiley Periodicals, Inc.  相似文献   
6.
7.
The purpose of this research was to investigate the contributions of individual muscles to joint rotational stiffness and total joint rotational stiffness about the lumbar spine’s L4–5 joint prior to, and following, sudden dynamic lateral perturbations to the trunk. Kinematic and surface EMG data were collected while subjects maintained a kneeling posture on a robotic platform, while restrained so that motions caused by the perturbation were transferred to the pelvis, causing motion of the trunk and head. The robotic platform caused sudden inertial trunk lateral perturbations to the right or left, with or without timing and direction knowledge. An EMG-driven model of the lumbar spine was used to calculate the muscle forces and contributions to joint rotational stiffness during the perturbations. Data showed 95% and 106% increases in total joint rotational stiffness, about the lateral bend and axial twist axes, when subjects had knowledge of the timing of the perturbation. Also, the contralateral muscles exhibited a significantly larger total joint rotational stiffness about the lateral bend axis, and earlier surface EMG responses, than the ipsilateral muscles. The results indicate that, when the timing of the perturbation was unknown, subjects relied more on delayed muscle forces following the perturbation to stiffen the L4–5 joint.  相似文献   
8.
In comparison with other decapods, the Caribbean spiny lobster Panulirus argus has little diversity in the external morphology of the setae on the mouth apparatus. In mouthpart areas that frequently touch food items only two types of setae can be distinguished: simple setae and cuspidate setae. Simple setae are by far more numerous. The ultrastructural data presented here show that both types of seta are bimodal, in that they both contain mechano- and chemosensory cells as indicated by morphological features. The morphological features divide the sensory cells into three types: type 1, which has a mechanosensory appearance; type 2, which has a chemosensory appearance; and type 3, which is believed to be a mechanoreceptor due to desmosomal connections to a scolopale. All three cell types were found in all examined setae. In an earlier study the simple setae were found to contain two types of mechanosensors: bend-sensitive cells and displacement-sensitive cells. The morphological arrangement of the outer dendritic segment described in the present study cannot explain this division. Instead, it is suggested that the difference in sensitivity is caused by a differential arrangement of their stretch-sensitive ion channels. This hypothesis also provides an explanation for the earlier observation that only bend cells respond to changes in osmolarity.  相似文献   
9.
We review our methodology for producing physically accurate potential energy functions, particularly relevant in the context of Lifson's goal of including frequency agreement as one of the criteria of a self-consistent force field. Our spectroscopically determined force field (SDFF) procedure guarantees such agreement by imposing it as an initial constraint on parameter optimization, and accomplishes this by an analytical transformation of ab initio "data" into the energy function format. After describing the elements of the SDFF protocol, we indicate its implementation to date and then discuss recent advances in our representation of the force field, in particular those required to produce an SDFF for the peptide group.  相似文献   
10.
Lu Y  Weers BD  Stellwagen NC 《Biopolymers》2003,70(2):270-288
Transient electric birefringence has been used to analyze DNA bending in six restriction fragments containing 171, 174, 207, 263, 289, and 471 bp in three different low ionic strength buffers. The target fragments contain sequences corresponding to the apparent bend centers in pUC19 and Litmus 28, previously identified by the circular permutation assay (Strutz, K.; Stellwagen, N. C. Electrophoresis 1996, 17, 989-995). The target fragments migrate anomalously slowly in polyacrylamide gels and exhibit birefringence relaxation times that are shorter than those of restriction fragments of the same size, taken from nonbent regions of the same plasmids. Apparent bend angles ranging from 30 degrees to 41 degrees were calculated for the target fragments by tau-ratio method. The bend angles of four of the target fragments were independent of temperature from 4 degrees C to 20 degrees C, but decreased when the temperature was increased to 37 degrees C. The bend angles of the other two target fragments were independent of temperature over the entire range examined, 4 degrees -37 degrees C. Hence, the thermal stability of sequence-dependent bends in random-sequence DNA is variable. The bend angles of five of the six target fragments were independent of the presence or absence of Mg2+ ions in the solution, indicating most of the target fragments were stably bent or curved, rather than anisometrically flexible. Restriction fragments containing 219 and 224 bp, with sequences somewhat offset from the sequence of the 207 bp fragment, were also studied. Comparison of the tau-ratios of these overlapping fragments allowed both the bend angle and bend position to be independently determined. These methods should be useful for analyzing sequence-dependent bending in other random-sequence DNAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号