首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   41篇
  国内免费   18篇
  2023年   7篇
  2022年   5篇
  2021年   11篇
  2020年   14篇
  2019年   20篇
  2018年   13篇
  2017年   17篇
  2016年   9篇
  2015年   6篇
  2014年   6篇
  2013年   13篇
  2012年   7篇
  2011年   9篇
  2010年   10篇
  2009年   12篇
  2008年   14篇
  2007年   11篇
  2006年   7篇
  2005年   11篇
  2004年   9篇
  2003年   1篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有234条查询结果,搜索用时 31 毫秒
1.
Detrimental effects of vines on tree growth in successional environments have been frequently reported. Little is known, however, about the relative importance of below and aboveground competition from vines on tree growth. The objective of this study was to quantify and compare the growth responses of Liquidambar styraciflua saplings to below and/or aboveground competition with the exotic evergreen vine, Lonicera japonica (Japanese honeysuckle), and the native deciduous vine, Parthenocissus quinquefolia (Virginia creeper). Soil trenching and/or vine-trellising were used to control the type of vine competition experienced by trees. Comparisons among untrenched treatments tested for effects of belowground competition. Comparisons among trenched treatments tested for effects of aboveground competition. After two growing seasons, Lonicera japonica had a greater effect on the growth of L. styraciflua than did P. quinquefolia. This effect was largely due to root competition, as canopy competition only had a negative effect on tree growth when it occurred in combination with root competition. Leaf expansion was consistently and similarly affected by all treatments which involved belowground competition.  相似文献   
2.
Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m−2 year−1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p < .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (>40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget.  相似文献   
3.
Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad-scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long-term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland–shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one-time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long-term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change.  相似文献   
4.
Soils contain biotic and abiotic legacies of previous conditions that may influence plant community biomass and associated aboveground biodiversity. However, little is known about the relative strengths and interactions of the various belowground legacies on aboveground plant–insect interactions. We used an outdoor mesocosm experiment to investigate the belowground legacy effects of range-expanding versus native plants, extreme drought and their interactions on plants, aphids and pollinators. We show that plant biomass was influenced more strongly by the previous plant community than by the previous summer drought. Plant communities consisted of four congeneric pairs of natives and range expanders, and their responses were not unanimous. Legacy effects affected the abundance of aphids more strongly than pollinators. We conclude that legacies can be contained as soil ‘memories’ that influence aboveground plant community interactions in the next growing season. These soil-borne ‘memories’ can be altered by climate warming-induced plant range shifts and extreme drought.  相似文献   
5.
Plants provide resources and shape the habitat of soil organisms thereby affecting the composition and functioning of soil communities. Effects of plants on soil communities are largely taxon‐dependent, but how different functional groups of herbaceous plants affect trophic niches of individual animal species in soil needs further investigation. Here, we studied the use of basal resources and trophic levels of dominating soil meso‐ and macrofauna using stable isotope ratios of carbon and nitrogen in arable fallow systems 3 and 14–16 years after abandonment. Animals were sampled from the rhizosphere of three plant species of different functional groups: a legume (Medicaco sativa), a nonlegume herb (Taraxacum officinale), and a grass (Bromus sterilis). We found virtually no consistent effects of plant identity on stable isotope composition of soil animals and on thirteen isotopic metrics that reflect general food‐web structure. However, in old fallows, the carbon isotope composition of some predatory macrofauna taxa had shifted closer to that of co‐occurring plants, which was particularly evident for Lasius, an aphid‐associated ant genus. Trophic levels and trophic‐chain lengths in food webs were similar across plant species and fallow ages. Overall, the results suggest that variations in local plant diversity of grassland communities may little affect the basal resources and the trophic level of prey consumed by individual species of meso‐ and macrofauna belowground. By contrast, successional changes in grassland communities are associated with shifts in the trophic niches of certain species, reflecting establishment of trophic interactions with time, which shapes the functioning and stability of soil food webs.  相似文献   
6.
根周转是地下生态过程的主要驱动力, 根属性指征了物种生态策略, 根寿命与属性是理解生态系统碳氮循环和群落多样性的关键。目前对亚热带常绿阔叶林根周转等生态过程的直接观测资料缺乏。该研究对中亚热带江西樟树试验林场6个树种吸收细根动态进行了2年观测, 获取了2.8万张微根管照片, 分析了吸收细根寿命年际和季节变化特征及其与根形态属性的关系。结果显示: 1)亚热带6个树种间吸收细根寿命变异为4.6倍, 变异系数可达73%。中值寿命排序为: 红豆杉(Taxus wallichiana)(426天) >复羽叶栾树( Koelreuteria bipinnata)(155天) >竹柏( Nageia nagi)(145天) >樟( Cinnamomum camphora)(126天) >东京樱花( Cerasus yedoensis)(93天) >深山含笑( Michelia maudiae)(92天); 2)树木吸收细根寿命年际、季节变异较大, 可能是适应伏秋旱、雨热不同期、年际变化大的亚热带季风气候的结果; 3)吸收细根寿命与直径呈显著正相关关系, 与比根长呈显著负相关关系, 表明根的构建成本可以在一定程度上预测寿命。这些结果为预测亚热带地下生态过程、揭示亚热带常绿阔叶林碳氮循环、物种共存机制提供依据。  相似文献   
7.
Grassland productivity in response to climate change and land use is a global concern. In order to explore the effects of climate change and land use on net primary productivity (NPP), NPP partitioning [fBNPP, defined as the fraction of belowground NPP (BNPP) to NPP], and rain‐use efficiency (RUE) of NPP, we conducted a field experiment with warming (+3 °C), altered precipitation (double and half), and annual clipping in a mixed‐grass prairie in Oklahoma, USA since July, 2009. Across the years, warming significantly increased BNPP, fBNPP, and RUEBNPP by an average of 11.6%, 2.8%, and 6.6%, respectively. This indicates that BNPP was more sensitive to warming than aboveground NPP (ANPP) since warming did not change ANPP and RUEANPP much. Double precipitation stimulated ANPP, BNPP, and NPP but suppressed RUEANPP, RUEBNPP, and RUENPP while half precipitation decreased ANPP, BNPP, and NPP but increased RUEANPP, RUEBNPP, and RUENPP. Clipping interacted with altered precipitation in impacting RUEANPP, RUEBNPP, and RUENPP, suggesting land use could confound the effects of precipitation changes on ecosystem processes. Soil moisture was found to be a main factor in regulating variation in ANPP, BNPP, and NPP while soil temperature was the dominant factor influencing fBNPP. These findings suggest that BNPP is critical point to future research. Additionally, results from single‐factor manipulative experiments should be treated with caution due to the non‐additive interactive effects of warming with altered precipitation and land use (clipping).  相似文献   
8.
9.
Although there are generalized conceptual models that predict how above and belowground biomass increase during secondary succession after abandonment from agriculture, there are few data to test these models for fine roots (defined as ≤2 mm diameter) in tropical forests. We measured live and dead fine roots (0–10 cm depth) in 18 plots of regenerating tropical dry forest in Costa Rica that varied in age from 5 to 60 yrs, as well as in soil properties. We predicted that both stand age and soil fertility would affect fine roots, with greater values in older forests on low fertility soils. Across two sampling dates and locations, live fine roots varied from 0.35 to 3.53 Mg/ha and dead roots varied from 0.15 to 0.93 Mg/ha. Surprisingly, there was little evidence that surface fine roots varied between sampling dates or in relation to stand age. By contrast, total, live, and dead fine roots averaged across sampling dates within plots were negatively correlated with a multivariate index of soil fertility (Pearson correlations coefficients were ?0.64, ?0.58, and ?0.68, respectively; < 0.01) and other individual edaphic variables including pH, silt, calcium, magnesium, nitrogen, and phosphorus. These results suggest that soil fertility is a more important determinant of fine roots than forest age in tropical dry forests in Costa Rica, and that one‐way these plant communities respond to low soil fertility is by increasing fine roots. Thus, simple conceptual models of forest responses to abandonment from agriculture may not be appropriate for surface fine roots.  相似文献   
10.
Intensive land use of the Brazilian Atlantic Forest accelerated with the rise of sugar cane plantations in the northeastern part of Brazil. Consequently, many ecosystems were destroyed, including riparian forests. The number of studies of riparian restoration has increased but comparative studies on the belowground effects of common reforestation strategies are rare. Here, we compared soil microbial properties among four different land use types: native rainforest, sugar cane plantation, single species reforestation, and mixed species reforestation, each replicated at two spatially independent sites. Soil samples were taken in 2013 and 2014, that is 2 and 3 years after reforestation, respectively. In both years, land use types had a significant effect on basal respiration, microbial biomass, and specific respiration (whereas specific respiration was marginally affected in 2014). In 2013, basal respiration in sugar cane plantations was significantly lower (?65%) when compared to native forests. In 2014, basal respiration (+60%) and soil microbial biomass (+90%) were significantly higher in mixed species reforestation compared to sugar cane, whereas single species reforestation had comparable values as in sugar cane plantations. Our results indicate that soil microbial biomass and activity respond rapidly to land use change when mixed species reforestation is used. Thus, using mixed species reforestation may enhance the provisioning of ecosystem services already in the short term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号