首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1678篇
  免费   219篇
  国内免费   163篇
  2060篇
  2024年   7篇
  2023年   39篇
  2022年   58篇
  2021年   57篇
  2020年   68篇
  2019年   97篇
  2018年   76篇
  2017年   82篇
  2016年   98篇
  2015年   105篇
  2014年   124篇
  2013年   210篇
  2012年   101篇
  2011年   106篇
  2010年   93篇
  2009年   78篇
  2008年   84篇
  2007年   68篇
  2006年   53篇
  2005年   40篇
  2004年   44篇
  2003年   44篇
  2002年   31篇
  2001年   39篇
  2000年   20篇
  1999年   29篇
  1998年   28篇
  1997年   19篇
  1996年   17篇
  1995年   13篇
  1994年   8篇
  1993年   6篇
  1992年   12篇
  1991年   8篇
  1990年   12篇
  1989年   8篇
  1988年   16篇
  1987年   7篇
  1986年   10篇
  1985年   8篇
  1984年   10篇
  1983年   4篇
  1982年   6篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
排序方式: 共有2060条查询结果,搜索用时 0 毫秒
1.
2.
The expected increase in the global demand for livestock products calls for insight in the scope to increase actual production levels across the world. This insight can be obtained by using theoretical concepts of production ecology. These concepts distinguish three production levels for livestock: potential (i.e. theoretical maximum) production, which is defined by genotype and climate only; feed-limited production, which is limited by feed quantity and quality; and actual production. The difference between the potential or limited production and the actual production is the yield gap. The objective of this paper, the first in a series of three, is to present a mechanistic, dynamic model simulating potential and feed-limited production for beef cattle, which can be used to assess yield gaps. A novelty of this model, named LiGAPS-Beef (Livestock simulator for Generic analysis of Animal Production Systems – Beef cattle), is the identification of the defining factors (genotype and climate) and limiting factors (feed quality and available feed quantity) for cattle growth by integrating sub-models on thermoregulation, feed intake and digestion, and energy and protein utilisation. Growth of beef cattle is simulated at the animal and herd level. The model is designed to be applicable to different beef production systems across the world. Main model inputs are breed-specific parameters, daily weather data, information about housing, and data on feed quality and quantity. Main model outputs are live weight gain, feed intake and feed efficiency (FE) at the animal and herd level. Here, the model is presented, and its use is illustrated for Charolais and Brahman × Shorthorn cattle in France and Australia. Potential and feed-limited production were assessed successfully, and we show that FE of herds is highest for breeds most adapted to the local climate conditions. LiGAPS-Beef also identified the factors that define and limit growth and production of cattle. Hence, we argue the model has scope to be used as a tool for the assessment and analysis of yield gaps in beef production systems.  相似文献   
3.
To elucidate the role of the spiral limbus in glucose transport in the cochlea, we analyzed the expression and localization of GLUT1, connexin26, connexin30, and occludin in the spiral limbus of the rat cochlea. GLUT1 and occludin were detected in blood vessels. GLUT1, connexin26, connexin30, and occludin were also expressed in fibrocytes just basal to the supralimbal lining cells. Connexin26 and connexin30 were present among not only these GLUT1-positive fibrocytes but also GLUT1-negative fibrocytes. In vivo glucose imaging using 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-6-deoxyglucose (6-NBDG, MW 342) together with Evans Blue Albumin (EBA, MW 68,000) showed that 6-NBDG was rapidly distributed throughout the spiral limbus, whereas EBA was localized only in the vessels. Moreover, the gap junctional uncoupler heptanol inhibited the distribution of 6-NBDG. These findings suggest that gap junctions play an important role in glucose transport in the spiral limbus, i.e., that gap junctions mediate glucose transport from GLUT1-positive fibrocytes to GLUT1-negative fibrocytes in the spiral limbus.  相似文献   
4.
Complex coevolutionary relationships among competitors, predators, and prey have shaped taxa diversity, life history strategies, and even the avian migratory patterns we see today. Consequently, accurate documentation of prey selection is often critical for understanding these ecological and evolutionary processes. Conventional diet study methods lack the ability to document the diet of inconspicuous or difficult‐to‐study predators, such as those with large home ranges and those that move vast distances over short amounts of time, leaving gaps in our knowledge of trophic interactions in many systems. Migratory raptors represent one such group of predators where detailed diet studies have been logistically challenging. To address knowledge gaps in the foraging ecology of migrant raptors and provide a broadly applicable tool for the study of enigmatic predators, we developed a minimally invasive method to collect dietary information by swabbing beaks and talons of raptors to collect trace prey DNA. Using previously published COI primers, we were able to isolate and reference gene sequences in an open‐access barcode database to identify prey to species. This method creates a novel avenue to use trace molecular evidence to study prey selection of migrating raptors and will ultimately lead to a better understanding of raptor migration ecology. In addition, this technique has broad applicability and can be used with any wildlife species where even trace amounts of prey debris remain on the exterior of the predator after feeding.  相似文献   
5.
6.
7.
Summary Particles and pits of freeze-fractured gap junctions are considered as complementary structures despite the frequent observations of more regular and closer spacings of pits, ascribed to plastic deformation of particle arrays. Recently, however, the noncomplementarity of pits and particles in Purkinje fibers has been reported. To ascertain the relationship between both structures, gap junctions from fixed, cryoprotected liver and myocardium were investigated using spacing and density measurements and complementary replicas.In hepatocyte gap junctions, the center-to-center distances (mean±sd) among pits, 9.57±1.49 nm, and particles, 9.70±1.77 nm, are not significantly different. Density determinations yielded a slightly higher value for the pits, (11,510±830)/m2, than for the particles, (11,230±950)/m2. In the myocardium, the spacing of the regularly arrayed pits, 9.55±1.33 nm barely exceeds the value of 9.44±1.62 nm for the particles, which show some clustering. However, the packing density for the pits, (10,090±740)/m2, appears a little higher than that of the particles (9,890±920)/m2. As density and spacing measurements provided no decisive answers, the positions of individual pits and particles of complementary junctional faces were recorded on transparent sheets and compared. In this fashion, a one-to-one correspondence between particles and pits could be established, while small discrepancies may be attributed to plastic deformation. Moreover, the collinearity of pits and particles may be suggested by the observation of a platinum grain in the center of many pits.  相似文献   
8.
Summary The junctional complexes of cells in the outer arachnoid layer overlying the cerebral cortex of 2-week-old rats were examined with freeze-fracture electron microscopy up to 60 min after transcranial cold injury to the dorsal surface of the brain. Within 30 min after injury, areas of gap and tight junctions with morphological features characteristic of junction formation and/or junction disruption were found scattered among normal junctional complexes in some arachnoid cells. Within 60 min after injury, tight junctions with features typical of less leaky zonulae occludentes were present in all arachnoid cells examined. These morphological features include increases in the number of tight junctional strands and the number of strand-to-strand anatomoses. Gap junctions were interspersed among the tight junctional strands, and many were completely encircled by the strands. The increase in the number and complexity of the tight junctional strands in response to brain injury may be the morphological basis for the maintenance of the cerebrospinal fluid-blood dural barrier.This study was supported by the National Institute of Neurological and Communicative Disorders and Stroke Grant NS20590. The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the DoD or the USUHS. The experiments reported herein were conducted according to the principles set forth in the Guide for Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources, National Research Council, DHEW Pub. No. (NIH) 78-23  相似文献   
9.
Summary Lateral axons from the abdominal nerve cord of cray-fish were internally perfused with the calcium receptor calmodulin (CaM) in solutions with low (pCa>7.0) or high (pCa 5.5) calcium concentrations and studied electrophysiologically and morphologically. Results from these experiments show that when the internal solution contains calcium-activated calmodulin (Ca2+-CaM) the junctional resistance between the axons increases from control values of about 60 to 500–600 k in 60 min. In contrast, axons perfused with calmodulin in low calcium solutions maintain their junctional resistance at control levels during the 60-min perfusion. Similar results are obtained when only one or both coupled axons are perfused.The morphological study shows that in the perfused axons the axoplasmic organelles are replaced or grossly perturbed by the perfusion solution up to the region of the synapses. Additionally, in axons perfused with Ca2+-CaM there are regions where the synaptic gap between the membranes decreases from a control 4–6 to 2–3 nm. Both electrophysiological and morphological results can be interpreted as indicating that calcium-activated calmodulin acts directly on the junctional channels to induce their closure.  相似文献   
10.
Canopy gaps are important as entry points for new genotypes and new species into many types of vegetation, yet little is known about them in any type of vegetation but forests. Forest gaps are too large for manipulative experiments to be readily undertaken, and hitherto grassland gaps have been too small to be easily mapped. Preliminary results from mapping small (>1 cm) grassland gaps with a new fibre-optic device suggest that experiments need to be performed at a smaller physical scale than has hitherto been achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号