首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   610篇
  免费   49篇
  国内免费   53篇
  712篇
  2024年   3篇
  2023年   18篇
  2022年   25篇
  2021年   25篇
  2020年   10篇
  2019年   16篇
  2018年   14篇
  2017年   12篇
  2016年   16篇
  2015年   25篇
  2014年   16篇
  2013年   30篇
  2012年   16篇
  2011年   23篇
  2010年   23篇
  2009年   35篇
  2008年   34篇
  2007年   27篇
  2006年   39篇
  2005年   40篇
  2004年   35篇
  2003年   32篇
  2002年   31篇
  2001年   19篇
  2000年   10篇
  1999年   9篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   8篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   7篇
  1985年   22篇
  1984年   16篇
  1983年   7篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1977年   3篇
  1976年   2篇
  1974年   1篇
排序方式: 共有712条查询结果,搜索用时 0 毫秒
1.
A tailed bacteriophage, φMR11 (siphovirus), was selected as a candidate therapeutic phage against Staphylococcus aureus infections. Gene 61, one of the 67 ORFs identified, is located in the morphogenic module. The gene product (gp61) has lytic domains homologous to CHAP (corresponding to an amidase function) at its N-terminus and lysozyme subfamily 2 (LYZ2) at its C-terminus. Each domain of gp61 was purified as a recombinant protein. Both the amidase [amino acids (aa) 1–150] and the lysozyme (aa 401–624) domains but not the linker domain (aa 151–400) caused efficient lysis of S . aureus . Immunoelectron microscopy localized gp61 to the tail tip of the φMR11 phage. These data strongly suggest that gp61 is a tail-associated lytic factor involved in local cell-wall degradation, allowing the subsequent injection of φMR11 DNA into the host cytoplasm. Staphylococcus aureus lysogenized with φMR11 was also lysed by both proteins. Staphylococcus aureus strains on which φMR11 phage can only produce spots but not plaques were also lysed by each protein, indicating that gp61 may be involved in 'lysis from without'. This is the first report of the presence of a tail-associated virion protein that acts as a lysin, in an S. aureus phage.  相似文献   
2.
To sequence a DNA segment inserted into a cosmid vector underthe directed sequencing strategy, we established a simple andrapid method for generating nested deletions which uses thein vitro packaging system of bacteriophage T3 DNA. The principleis based on the previous finding that this system can translocateany linear double-stranded DNA up to 40 kb into the phage capsidin a time-dependent manner and the encapsulated DNA becomesDNase-resistant. For this purpose, we constructed a cosmid vectorthat carries two different antibiotic selection markers at bothsides of the multiple cloning site, and after insertion of aDNA segment, the clone was linearized by -terminase at the cossite. After the packaging reaction in vitro followed by DNasetreatment, the encapsulated DNA was introduced into Escherichiacoli cells to give clones with unidirectional deletions by differentialantibiotic selection. Restriction and sequence analyses of deletionclones demonstrated that an ordered set of clones with nesteddeletions, ranging from less than 1 kb to 25 kb, was createdfrom either the end of the DNA segment. Thus, nested deletionclones that cover the entire region of a 40-kb cosmid insertcan be obtained by a single packaging reaction, and its restrictionmap can be simultaneously obtained.  相似文献   
3.
4.
CRISPR-Cas immune systems in bacteria and archaea protect against viral infection, which has spurred viruses to develop dedicated inhibitors of these systems called anti-CRISPRs (Acrs). Like most host-virus arms races, many diverse examples of these immune and counter-immune proteins are encoded by the genomes of bacteria, archaea, and their viruses. For the case of Acrs, it is almost certain that just a small minority of nature’s true diversity has been described. In this review, I discuss the various approaches used to identify these Acrs and speculate on the future for Acr discovery. Because Acrs can determine infection outcomes in nature and regulate CRISPR-Cas activities in applied settings, they have a dual importance to both host-virus conflicts and emerging biotechnologies. Thus, revealing the largely hidden world of Acrs should provide important lessons in microbiology that have the potential to ripple far beyond the field.  相似文献   
5.
The partitioning of partially folded polypeptide chains between correctly folded native states and off-pathway inclusion bodies is a critical reaction in biotechnology. Multimeric partially folded intermediates, representing early stages of the aggregation pathway for the P22 tailspike protein, have been trapped in the cold and isolated by nondenaturing polyacrylamide gel electrophoresis (PAGE) (speed MA, Wang DIC, King J. 1995. Protein Sci 4:900-908). Monoclonal antibodies against tailspike chains discriminate between folding intermediates and native states (Friguet B, Djavadi-Ohaniance L, King J, Goldberg ME. 1994. J Biol Chem 269:15945-15949). Here we describe a nondenaturing Western blot procedure to probe the conformation of productive folding intermediates and off-pathway aggregation intermediates. The aggregation intermediates displayed epitopes in common with productive folding intermediates but were not recognized by antibodies against native epitopes. The nonnative epitope on the folding and aggregation intermediates was located on the partially folded N-terminus, indicating that the N-terminus remained accessible and nonnative in the aggregated state. Antibodies against native epitopes blocked folding, but the monoclonal directed against the N-terminal epitope did not, indicating that the conformation of the N-terminus is not a key determinant of the productive folding and chain association pathway.  相似文献   
6.
The glucosyl transferase gene (gtr) from bacteriophage phage X (SfX) caused partial conversion of serotype Y (group antigen 3, 4) to X (group antigen 7, 8) when introduced into a candidate vaccine strain of Shigella flexneri serotype Y (SFL124). The gtr gene caused conversion of O-antigens but did not eliminate the adsorption of the corresponding phage SfX. The hybrid strain expressing both group antigens 7, 8 and 3, 4 showed 75% protection when immunized guinea pigs were challenged with a wild-type S. flexneri serotype X strain. No protection was observed against serotype Y challenge, although group antigen 3, 4 was detected in the LPS of the hybrid strain. This suggests the importance of O-antigen immunity in the host defense against shigellosis.  相似文献   
7.
Summary A few cell lines and primary monolayer cultures were accidentally infected by bacteria. These cultures were successfully decontaminated by means of the specific bacteriophage virus after quick identification of the responsible bacteria. This method presents a practical interest for preservation of valuable cultures. This work is supported by the Institut National de la Sante et de la Recherche Medicale (France) and the Fondation pour la Recherche Medicale (France).  相似文献   
8.
9.
Summary The nucleotide sequence of the circular single-stranded genome of the filamentous Escherichia coli phage I2-2 has been determined and compared with those of the filamentous E. coli phages Ff(M13, fl, or fd) and IKe. The I2-2 DNA sequence comprises 6744 nucleotides; 139 nucleotides less than that of the N- and I2-plasmid-specific phage IKe, and 337 (336) nucleotides more than that of the F-plasmid-specific phage Ff. Nucleotide sequence comparisons have indicated that I2-2, IKe, and Ff have a similar genetic organization, and that the genomes of I2-2 and IKe are evolutionarily more closely related than those of I2-2 and Ff. The studies have further demonstrated that the I2-2 genome is a composite replicon, composed of only two-thirds of the ancestral genome of IKe. Only a contiguous I2-2 DNA sequence of 4615 nucleotides encompassing not only the coat protein and phage assembly genes, but also the signal required for efficient phage morphogenesis, was found to be significantly homologous to sequences in the genomes of IKe and Ff. No homology was observed between the consecutive DNA sequence that contains the origins for viral and complementary strand replication and the replication genes. Although other explanations cannot be ruled out, our data strongly suggest that the ancestor filamentous phage genome of phages I2-2 and IKe has exchanged its replication module during evolution with that of another replicon, e.g., a plasmid that also replicates via the so-called rolling circle mechanism. Offprint requests to: R.N.H. Konings  相似文献   
10.
The characteristics of pure preparations of short-tail fibers of bacteriophage T4 have been studied in the optical and electron microscope. Three main structures were observed: 1) spheres of 8.1 nm diameter; 2) fibers 43 nm long and 3.8 nm thick; and 3) fibers 54 nm long and 3.2 nm thick. Both types of fibers exhibited a regular beaded appearance. The 43-nm fibers were the most abundant structure. During the process of purification of the short-tail fibers, the formation of aggregates was observed each time the material containing the short-tail fibers was dialyzed against saline solutions. These aggregates became increasingly fibrous (as observed in the optical microscope) as the material used was increasingly enriched in short-tail fibers. Finally, most of the aggregates were of the fibrous type when they were formed from a purified preparation of short-tail fibers. In the electron microscope, it was found that the filamentous aggregates were organized in well-defined bundles. The amino acid composition of the highly purified short-tail fibers was also determined. Among the known fibrous proteins, the ones that most resemble the amino acid composition of the short-tail fibers are actin and fibrinogen. These observations are discussed in relation to the T4 short-tail fiber structure and their localization on the hexagonal baseplate of the T4 tail structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号