首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
  国内免费   2篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1986年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Long-term changes in composition, structure and biodiversity (i.e. taxonomic richness, diversity index, species traits and habitat-affinity) of interstitial assemblages were studied in two floodplain systems: a restored backwater and an artificial drainage canal. Before restoration, the backwater, affected by both terrestrialisation and eutrophication, was weakly populated by a low diversified fauna dominated by walkers, macrofauna, detritivores, and stygoxenes (i.e. taxa that occur incidentally in ground waters) that reproduce biparentally and lack parental care. This backwater displayed an upstream–downstream gradient in response to restoration works. Upstream, the dredging of fine organic sediments favoured inputs of nutrient-poor groundwater and exchanges between groundwater and surface water that induced an increase in taxonomic richness (in both herbivores and stygoxenes). Downstream the deposition of fine sediment that was suspended in the water column by restoration work enhanced colmation that induced a decrease in herbivore and swimming taxa, and an increase in mesofaunal taxa, whilst phreatobites (i.e. taxa specialized to interstitial life) remained absent from the system. The drainage canal that was artificially hollowed-out to lower the surrounding water table, harbors mixed assemblages of epigean (i.e. taxa of surface-water habitats) and hypogean (i.e. taxa of groundwater habitats) taxa. The upstream part, which is weakly influenced by surface waters, was colonized by phreatobites as oligotrophic conditions increased. The intermediate part, which is fed by surface water and where mesotrophic conditions occurred as habitats progressively matured and diversified, showed diversification of its fauna. The downstream part of the drainage canal displayed the reverse dynamic – this suggests a reduction in groundwater supply due to the clogging of sediment interstices fine sediments, the deposition of which is linked to the Rossillon backwater restoration works.  相似文献   
2.
1. The effects of channelisation on macroinvertebrates were examined in relation to a spate and flow refugia. Habitat components that can function as flow refugia were identified in a small, low‐gradient stream in northern Hokkaido, Japan. 2. Macroinvertebrates and their habitat characteristics (depth, current velocity and substratum) were sampled and measured in natural and channelised sections on three occasions: before, during and immediately after a spate. For macroinvertebrate sampling and habitat measurements, five (riffle, glide, pool, backwater and inundated habitats) and three (channelised‐mid, channelised‐edge and inundated habitats) habitat types were classified in the natural and channelised section, respectively. 3. The rate of velocity increase with discharge was compared among habitat types to determine which habitat types were less affected by increased discharge. The rate was the highest in riffles followed by glides and channelised‐mids. Backwaters maintained low current velocity even at high flow. In addition, current velocity in both natural and channelised inundated habitats was low relative to other habitat types during the spate. 4. Through the spate, total density of macroinvertebrates in channelised‐mids and taxon richness in both channelised‐mids and edges decreased. In the natural section, however, such a significant decrease was not found except for taxon richness in pools. This indicated that the spate had a greater impact on assemblages in the channelised section. Riffle assemblages exhibited a rapid recovery immediately after the spate, suggesting the existence of flow refugia in the natural section. Among the habitat types we examined, backwaters and inundated habitats appeared to have acted as flow refugia, because these habitats accumulated macroinvertebrates during the spate. 5. The lower persistence of the macroinvertebrate assemblage in the channelised section was attributable to the lower availability of flow refugia such as backwaters and inundated habitats. Our results emphasised the importance of considering flow fluctuations and refugia in assessing the effects of channelisation. In addition, the lateral heterogeneity of stream channels should be considered in stream restoration and management.  相似文献   
3.
Ecological management of aquatic plants: effects in lowland streams   总被引:1,自引:0,他引:1  
Recently, a significant increase in macrophyte growth has been observed in many lowland rivers in Flanders, mainly due to eutrophication and an improvement of the water quality. This growth strongly influences the channel roughness (Manning-n). The first purpose of the project was a better understanding of the complex relationship between biomass development and discharge capacity in lowland rivers. In order to avoid the backing up of water upstream, the whole vegetation body is usually mowed annually. This project also investigated a lighter ecological management of aquatic plants in which only a part of the vegetation is removed in separate and alternating blocks, seeking a compromise between sufficient discharge and conserving large parts of the macrophyte vegetation with all its functions. Beside laboratory experiments, field survey was undertaken in the Grote Caliebeek, a tributary of the Kleine Nete in Flanders, Belgium. The results indicated that the presence of macrophytes in lowland rivers slowed down the waterflow and resulted in a raised water level. The upstream water level followed biomass development at a certain discharge level. The mowing experiments and the field survey indicated that alternating weed cutting patterns can reduce fall in an effective way. This research emphasizes the possibilities of alternating weed cutting patterns in order to deal with water flow problems. In the long term there will be the need for a better understanding of the ecological relationships in the search for a sustainable integrated method of controlling aquatic vegetation.  相似文献   
4.
Movement of radio-tagged riverine brown trout Salmo trutta , white sucker Catostomus commersoni and common carp Cyprinus carpio in the Grand River, Ontario, was minimal during the winter except during periods of high water discharge or the break-up of river ice. Ice break-up and flooding occur when southern air masses penetrate northwards in winter and as air temperatures increase in spring. Both white suckers and common carp moved the longest distances, generally in a downstream direction, during flooding and ice break-up. Brown trout moved less during these times. All three species had positive relationships between distance moved and water discharge. During periods of high water discharge and ice break-up, white suckers and common carp used backwater habitats more and main channel habitats less than during periods of low water discharge. During high flows, brown trout tended to use runs more and pools less. The break-up of river ice and accompanying flooding resulted in several fish being stranded on the floodplain. Backwater habitats appear to be important areas of refuge for riverine fishes during periods of flooding and ice break-up.  相似文献   
5.
Upper Mississippi River Restoration (UMRR) was implemented to monitor environmental status and trends and restore degraded habitat. There was little experience conducting restoration in large rivers, and engineering and ecological integration evolved through project implementation. Loss of depth in backwaters and side channels, excessive biological oxygen demand, increased currents, and low water temperatures were common symptoms of backwater eutrophication that were primary objectives for implementing UMRR. Biological outcome monitoring was initially funded for six projects using the most common methods to restore aquatic and wetland habitat. UMRR island construction occurred as four generations of learning. Current plans represent a comprehensive restoration approach including: physical process modeling (i.e. hydraulic and wind‐wave modeling) of existing conditions and alternative restoration measures. Habitat Rehabilitation and Enhancement Projects, fish response monitoring validated winter habitat suitability models. Long term fish population monitoring indicates sustainable recovery, and now population interaction among restored lakes is under investigation. Isolated wetland management in Illinois River backwater lakes can achieve bottom consolidation that promotes emergent wetland habitat response that migratory waterfowl exploit in large numbers. Adult fish movement between the river and management units is restricted to flood stage or through control structures and post‐project movements into the lake for overwintering were not apparent. The lack of Illinois River overwintering habitat is shown by an abundance of young fish and few older fish in status and trends monitoring. Upper Mississippi River System ecosystem restoration practitioners have implemented ecosystem restoration science and practice in a manner that exemplifies the best intent of adaptive management.  相似文献   
6.
2010年三峡大坝首次成功蓄水到175 m.为了探讨175 m蓄水对库区支流鱼类食物网能量来源的影响,采用稳定性同位素方法并结合多源线性混合模型(IsoSource模型)对小江回水区鲫、鲤、蒙古鲌、鲇、大鳍鳠、瓦氏黄颡鱼、光泽黄颡鱼等7种主要经济鱼类能量来源进行了分析.结果表明:蓄水前(2010年7月),微型藻类是7种主要经济鱼类能量的主要来源;蓄水后(2010年12月),微型藻类对7种主要经济鱼类能量来源的贡献比例略有下降,而陆生C4植物的相对贡献比例明显增加,特别是对杂食性鲫和肉食性鲇的贡献率分别达到了38% ~54%和32% ~ 50%.蓄水后,鲫和鲇至少有30%的能量来自陆生C4植物.说明三峡大坝的蓄水过程增加了外源性C4植物对鱼类能量的贡献比例.  相似文献   
7.
三峡库区消落带回水区水淹初期土壤种子库特征   总被引:6,自引:0,他引:6  
将三峡库区消落带回水区次生灌丛和弃耕地分成水淹区段、未水淹区段和对照样带,通过萌发法对其土壤种子库进行研究.结果表明:两种植被类型的土壤种子库储量存在极显著差异,次生灌丛种子密度为(6991±954)粒·m-2、弃耕地种子密度为(26193±6928)粒·m-2.3种生境中,水淹区段的种子密度最低,未水淹区段最高.随着土层加深,种子库密度逐渐下降.土壤种子库萌发试验出现的物种分属45科97属118种,以一年生和多年生草本植物为主,其中菊科、禾本科、玄参科和十字花科为优势科;个体数量占土壤种子库总储量小于0.01%的物种有34种,占28.8%.两种植被类型的土壤种子库中物种数较接近,物种多样性指数和均匀度较高,但优势物种组成差异很大,生态优势度较低.3种生境中,未水淹区段的生物多样性最高,水淹区段的生态优势度最高;而水淹区段和未水淹区段相似性指数最大.  相似文献   
8.
Oxygen isotopic data were used to assess how far waters from the Savannah River, a major river in the Southeastern United States, backed up and inundated the wetlands along a small Coastal Plain tributary during a flood. This approach worked because the water of this tributary, Unper Three Runs, had an oxygen isotopic composition (18O = –4.9 ) distinct from Savannah River water (18O = –3.2 ).Two sample surveys were taken from the mouth of Upper Three Runs to 2 km upstream. Waters were isotopically uniform along the length of the sample transect when both river and tributary water levels were below bankfull. Visual estimates of turbidity taken when both the river and tributary overflowed their channels and inundated adjacent wetlands indicated that Savannah River water extended about 300 meters up the tributary channel. In contrast, the isotopic data indicated that a mixing zone of river and tributary waters extended about 1100 meters upstream. Although this mixing zone was documented only in the channel of Upper Three Runs, it probably extended into adjacent parts of the riparian wetland, potentially affecting ecological processes due to the differing water quality. This study was conducted in a single river-tributary system and the approach is probably applicable in other large rivers.Corresponding Editor: R. SharitzTo Whom Correspondence should be sent  相似文献   
9.
Samples of larval and juvenile fishes were collected at two depths weekly during spring and summer 1983 near the mouths of backwater areas in Pool 13 of the Upper Mississippi River. The study was conducted to determine the relative value of these habitats as nursery areas for fishes present and to note any interactions that might occur between the backwaters which are being rapidly lost to siltation, and the main channel. The larvae and juveniles collected represented 13 families divided into 27 lower taxa. Cyprinidae, Clupeidae, and Sciaenidae made up 90% of the total catch. Both larvae and juveniles were more abundant near the surface than near the bottom. Densities differed greatly among the three backwater areas studied. Larval fishes were grouped on the basis of their relative abundance in the backwaters or main channel. Overall, more larvae were captured in the backwaters than in main-channel habitats, indicating that backwaters were more productive. In the main channel, densities were greater downstream from the mouths of the backwaters than upstream-possibly indicating that (1) larval fish drifted out of the backwater areas, (2) water rich in nutrients or zooplankton that flowed into the main channel created productive downstream sites that were used as nursery areas, or (3) adult fishes selected downstream sites as spawning areas. Juvenile forms were more abundant in the backwater areas then in the main-channel habitats, some bottom-dwelling fishes excepted. The backwater areas were judged to be important nursery areas for larval and juvenile fishes, and seemed to benefit downstream main-channel sites. Any loss of these habitats would be detrimental to the Mississippi River as a whole.  相似文献   
10.
Diel and distributional abundance patterns of free embryos and larvae of fishes in the lower Columbia River Basin were investigated. Ichthyoplankton samples were collected in 1993 during day and night in the main-channel and a backwater of the lower Columbia River, and in a tributary, the Deschutes River. Fish embryos and larvae collected in the main-channel Columbia River were primarily (85.6%) of native taxa (peamouth Mylocheilus caurinus, northern squawfish Ptychocheilus oregonensis, suckers Catostomus spp., and sculpins Cottus spp.), with two introduced species (American shad Alosa sapidissima and common carp Cyprinus carpio) comprising a smaller percentage of the catch (13.3%). Similarly, in the Deschutes River native taxa [lampreys (Petromyzontidae), minnows (Cyprinidae), and suckers Catostomus spp.] dominated collections (99.5% of the catch). In contrast, 83.5% of embryos and larvae in the Columbia River backwater were of introduced taxa [American shad, common carp, and sunfishes (Centrarchidae)]. In all locations, all dominant taxa except sculpins were collected in significantly greater proportions at night. Taxon-specific differences in proportions of embryos and larvae collected at night can in some instances be related to life history styles. In the main-channel Columbia River, northern squawfish and peamouth were strongly nocturnal and high proportions still had yolksacs, suggesting that they had recently hatched and were drifting downriver to rearing areas. In contrast, sculpin abundances were similar during day and night, and sculpins mostly had depleted yolksacs, indicating sculpins were feeding and rearing in offshore limnetic habitats. Taxon-specific diel abundance patterns and their causes must be considered when designing effective sampling programs for fish embryos and larvae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号