首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1994年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Abstract

The predictive power of solution-dependent conformational states of the Aβ(1–42) peptide of Alzheimer's disease by an optimized backpropagation neural network was tested. It was found that the neural network simulates well the solution-dependent conformations. The model was also examined by using geometry-optimized conformations (hybrid approach of Gasteiger charges plus MM+ molecular-mechanics) where the initial coordinates were obtained by NMR solution spectroscopy.  相似文献   
2.
Accurately predicting the populations with difficulties accessing drinking water because of drought and taking appropriate mitigation measures can minimize economic loss and personal injury. Taking the 2013 Guizhou extreme summer drought as an example, on the basis of collecting meteorological, basic geographic information, socioeconomic data, and disaster effect data of the study area, a rapid assessment model based on a backpropagation (BP) neural network was constructed. Six factors were chosen for the input of the network: the average monthly precipitation, Digital Elevation Model (DEM), river density, population density, road density, and gross domestic product (GDP). The population affected by drought was the model's output. Using samples from 50 drought-affected counties in Guizhou Province for network training, the model's parameters were optimized. Using the trained model, the populations in need were predicted using the other 74 drought-affected counties. The accuracy of the prediction model, represented by the coefficient of determination (R2) and the normalized root mean square error (N-RMSE), yielded 0.7736 for R2 and 0.0070 for N-RMSE. The method may provide an effective reference for rapid assessment of the population in need and disaster effect verification.  相似文献   
3.
Ecological systems are governed by complex interactions which are mainly nonlinear. In order to capture the inherent complexity and nonlinearity of ecological, and in general biological systems, empirical models recently gained popularity. However, although these models, particularly connectionist approaches such as multilayered backpropagation networks, are commonly applied as predictive models in ecology to a wide variety of ecosystems and questions, there are no studies to date aiming to assess the performance, both in terms of data fitting and generalizability, and applicability of empirical models in ecology. Our aim is hence to provide an overview for nature of the wide range of the data sets and predictive variables, from both aquatic and terrestrial ecosystems with different scales of time-dependent dynamics, and the applicability and robustness of predictive modeling methods on such data sets by comparing different empirical modeling approaches. The models used in this study range from predicting the occurrence of submerged plants in shallow lakes to predicting nest occurrence of bird species from environmental variables and satellite images. The methods considered include k-nearest neighbor (k-NN), linear and quadratic discriminant analysis (LDA and QDA), generalized linear models (GLM) feedforward multilayer backpropagation networks and pseudo-supervised network ARTMAP.Our results show that the predictive performances of the models on training data could be misleading, and one should consider the predictive performance of a given model on an independent test set for assessing its predictive power. Moreover, our results suggest that for ecosystems involving time-dependent dynamics and periodicities whose frequency are possibly less than the time scale of the data considered, GLM and connectionist neural network models appear to be most suitable and robust, provided that a predictive variable reflecting these time-dependent dynamics included in the model either implicitly or explicitly. For spatial data, which does not include any time-dependence comparable to the time scale covered by the data, on the other hand, neighborhood based methods such as k-NN and ARTMAP proved to be more robust than other methods considered in this study. In addition, for predictive modeling purposes, first a suitable, computationally inexpensive method should be applied to the problem at hand a good predictive performance of which would render the computational cost and efforts associated with complex variants unnecessary.  相似文献   
4.
The ability to predict isoprene emissions from plants is important for predicting atmospheric chemistry. To improve the basis for prediction capability, data obtained from continuous field measurements of isoprene and monoterpene emissions from three Amazonian tree species were related to observed environmental and leaf physiological parameters using a new neural network approach. The environmental parameters included leaf temperature, light, relative humidity, water vapour pressure deficit, and the history of ambient temperature and ozone concentration, whereas the physiological parameters included stomatal conductance, assimilation and intercellular CO2 concentration. The neural approach with 24 different combinations of these parameters was applied to predict the emission variability observed during short time periods (2–3 d) with individual tree branches and, on a longer-term scale, in aggregated data sets from different seasons, leaf developmental stage, and light environment. The results were compared to the quasi standard emission algorithm for isoprene. On the short-term scale, good agreement (r2≈ 0.9) was obtained between observations and predictions of the standard algorithm as well as predictions of the neural network using the same input parameters (leaf temperature and light). When these predictors were used to model the long-term emission variability, r2 was reduced to < 0.5 for both approaches. Remarkably, for the neural technique, more than 50% of the unexplained variance could be explained by the mean temperature of the preceding 36 h. An even better network performance was obtained with physiological parameter combinations (r2 > 0.9) suggesting a strong and applicable link between isoprenoid emission and leaf primary metabolism.  相似文献   
5.
6.
Pyramidal cells in the electrosensory lateral line lobe (ELL) of weakly electric fish have been observed to produce high-frequency burst discharge with constant depolarizing current (Turner et al., 1994). We present a two-compartment model of an ELL pyramidal cell that produces burst discharges similar to those seen in experiments. The burst mechanism involves a slowly changing interaction between the somatic and dendritic action potentials. Burst termination occurs when the trajectory of the system is reinjected in phase space near the ghost of a saddle-node bifurcation of fixed points. The burst trajectory reinjection is studied using quasi-static bifurcation theory, that shows a period doubling transition in the fast subsystem as the cause of burst termination. As the applied depolarization is increased, the model exhibits first resting, then tonic firing, and finally chaotic bursting behavior, in contrast with many other burst models. The transition between tonic firing and burst firing is due to a saddle-node bifurcation of limit cycles. Analysis of this bifurcation shows that the route to chaos in these neurons is type I intermittency, and we present experimental analysis of ELL pyramidal cell burst trains that support this model prediction. By varying parameters in a way that changes the positions of both saddle-node bifurcations in parameter space, we produce a wide gallery of burst patterns, which span a significant range of burst time scales.  相似文献   
7.
1. Two types of artificial neural networks procedures were used to define and predict diatom assemblage structures in Luxembourg streams using environmental data. 2. Self‐organising maps (SOM) were used to classify samples according to their diatom composition, and multilayer perceptron with a backpropagation learning algorithm (BPN) was used to predict these assemblages using environmental characteristics of each sample as input and spatial coordinates (X and Y) of the cell centres of the SOM map identified as diatom assemblages as output. Classical methods (correspondence analysis and clustering analysis) were then used to identify the relations between diatom assemblages and the SOM cell number. A canonical correspondence analysis was also used to define the relationship between these assemblages and the environmental conditions. 3. The diatom‐SOM training set resulted in 12 representative assemblages (12 clusters) having different species compositions. Comparison of observed and estimated sample positions on the SOM map were used to evaluate the performance of the BPN (correlation coefficients were 0.93 for X and 0.94 for Y). Mean square errors of 12 cells varied from 0.47 to 1.77 and the proportion of well predicted samples ranged from 37.5 to 92.9%. This study showed the high predictability of diatom assemblages using physical and chemical parameters for a small number of river types within a restricted geographical area.  相似文献   
8.
This article discusses the development of a prototype neural network-based supervisory control system for Bacillus thuringiensis fermentations. The input pattern to the neural network included the type of inoculum, operation temperature, pH value, accumulated process time, optical density in fermentation medium, and change in optical density. The output from the neural network was the predicted optical density for the next sampling time. The control system has been implemented in both a computer simulation and a laboratory fermentation experiment with promising results. (c) 1994 John Wiley & Sons, Inc.  相似文献   
9.
Many learning rules for neural networks derive from abstract objective functions. The weights in those networks are typically optimized utilizing gradient ascent on the objective function. In those networks each neuron needs to store two variables. One variable, called activity, contains the bottom-up sensory-fugal information involved in the core signal processing. The other variable typically describes the derivative of the objective function with respect to the cell's activity and is exclusively used for learning. This variable allows the objective function's derivative to be calculated with respect to each weight and thus the weight update. Although this approach is widely used, the mapping of such two variables onto physiology is unclear, and these learning algorithms are often considered biologically unrealistic. However, recent research on the properties of cortical pyramidal neurons shows that these cells have at least two sites of synaptic integration, the basal and the apical dendrite, and are thus appropriately described by at least two variables. Here we discuss whether these results could constitute a physiological basis for the described abstract learning rules. As examples we demonstrate an implementation of the backpropagation of error algorithm and a specific self-supervised learning algorithm using these principles. Thus, compared to standard, one-integration-site neurons, it is possible to incorporate interesting properties in neural networks that are inspired by physiology with a modest increase of complexity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号