首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2010年   1篇
  2007年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The factors controlling the stability, folding, and dynamics of integral membrane proteins are not fully understood. The high stability of the membrane protein bacteriorhodopsin (bR), an archetypal member of the rhodopsin photoreceptor family, has been ascribed to its covalently bound retinal cofactor. We investigate here the role of this cofactor in the thermodynamic stability and folding kinetics of bR. Multiple spectroscopic probes were used to determine the kinetics and energetics of protein folding in mixed lipid/detergent micelles in the presence and absence of retinal. The presence of retinal increases extrapolated values for the overall unfolding free energy from 6.3 ± 0.4 kcal mol− 1 to 23.4 ± 1.5 kcal mol− 1 at zero denaturant, suggesting that the cofactor contributes 17.1 kcal mol− 1 towards the overall stability of bR. In addition, the cooperativity of equilibrium unfolding curves is markedly reduced in the absence of retinal with overall m-values decreasing from 31.0 ± 2.0 kcal mol− 1 to 10.9 ± 1.0 kcal mol− 1, indicating that the folded state of the apoprotein is less compact than the equivalent for the holoprotein. This change in the denaturant response means that the difference in the unfolding free energy at a denaturant concentration midway between the two unfolding curves is only ca 3-6 kcal mol− 1. Kinetic data show that the decrease in stability upon removal of retinal is associated with an increase in the apparent intrinsic rate constant of unfolding, kuH2O, from ~1 × 10− 16 s− 1 to ~1 × 10− 4 s− 1 at 25 °C. This correlates with a decrease in the unfolding activation energy by 16.3 kcal mol− 1 in the apoprotein, extrapolated to zero SDS. These results suggest that changes in bR stability induced by retinal binding are mediated solely by changes in the activation barrier for unfolding. The results are consistent with a model in which bR is kinetically stabilized via a very slow rate of unfolding arising from protein-retinal interactions that increase the rigidity and compactness of the polypeptide chain.  相似文献   
2.
The 3D structures or dynamic feature of fully hydrated membrane proteins are very important at ambient temperature, in relation to understanding their biological activities, although their data, especially from the flexible portions such as surface regions, are unavailable from X-ray diffraction or cryoelectron microscope at low temperature. In contrast, high-resolution solid-state NMR spectroscopy has proved to be a very convenient alternative means to be able to reveal their dynamic structures. To clarify this problem, we describe here how we are able to reveal such structures and dynamic features, based on intrinsic probes from high-resolution solid-state NMR studies on bacteriorhodopsin (bR) as a typical membrane protein in 2D crystal, regenerated preparation in lipid bilayer and detergents. It turned out that their dynamic features are substantially altered upon their environments where bR is present. We further review NMR applications to study structure and dynamics of a variety of membrane proteins, including sensory rhodopsin, rhodopsin, photoreaction centers, diacylglycerol kinases, etc.  相似文献   
3.
Local dynamics of interhelical loops in bacteriorhodopsin (bR), the extracellular BC, DE and FG, and cytoplasmic AB and CD loops, and helix B were determined on the basis of a variety of relaxation parameters for the resolved 13C and 15N signals of [1-13C]Tyr-, [15N]Pro- and [1-13C]Val-, [15N]Pro-labeled bR. Rotational echo double resonance (REDOR) filter experiments were used to assign [1-13C]Val-, [15N]Pro signals to the specific residues in bR. The previous assignments of [1-13C]Val-labeled peaks, 172.9 or 171.1 ppm, to Val69 were revised: the assignment of peak, 172.1 ppm, to Val69 was made in view of the additional information of conformation-dependent 15N chemical shifts of Pro bonded to Val in the presence of 13C-15N correlation, although no assignment of peak is feasible for 13C nuclei not bonded to Pro. 13C or 15N spin-lattice relaxation times (T1), spin-spin relaxation times under the condition of CP-MAS (T2), and cross relaxation times (TCH and TNH) for 13C and 15N nuclei and carbon or nitrogen-resolved, 1H spin-lattice relaxation times in the rotating flame (1H T) for the assigned signals were measured in [1-13C]Val-, [15N]Pro-bR. It turned out that V69-P70 in the BC loop in the extracellular side has a rigid β-sheet in spite of longer loop and possesses large amplitude motions as revealed from 13C and 15N conformation-dependent chemical shifts and T1, T2, 1H T and cross relaxation times. In addition, breakage of the β-sheet structure in the BC loop was seen in bacterio-opsin (bO) in the absence of retinal.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号