首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   1篇
  2019年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 801 毫秒
1.
The Wnt pathway is a conserved signal transduction pathway that contributes to normal development and adult homeostasis, but is also misregulated in human diseases such as cancer. The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling inactivated in >80% of colorectal cancers. APC participates in a multiprotein “destruction complex” that targets the proto-oncogene β-catenin for ubiquitin-mediated proteolysis; however, the mechanistic role of APC in the destruction complex remains unknown. Several models of APC function have recently been proposed, many of which have emphasized the importance of phosphorylation of high-affinity β-catenin-binding sites [20-amino-acid repeats (20Rs)] on APC. Here we test these models by generating a Drosophila APC2 mutant lacking all β-catenin-binding 20Rs and performing functional studies in human colon cancer cell lines and Drosophila embryos. Our results are inconsistent with current models, as we find that β-catenin binding to the 20Rs of APC is not required for destruction complex activity. In addition, we generate an APC2 mutant lacking all β-catenin-binding sites (including the 15Rs) and find that a direct β-catenin/APC interaction is also not essential for β-catenin destruction, although it increases destruction complex efficiency in certain developmental contexts. Overall, our findings support a model whereby β-catenin-binding sites on APC do not provide a critical mechanistic function per se, but rather dock β-catenin in the destruction complex to increase the efficiency of β-catenin destruction. Furthermore, in Drosophila embryos expressing some APC2 mutant transgenes we observe a separation of β-catenin destruction and Wg/Wnt signaling outputs and suggest that cytoplasmic retention of β-catenin likely accounts for this difference.  相似文献   
2.
Zhang N  Jiang Y  Zou J  Zhuang S  Jin H  Yu Q 《Proteins》2007,67(4):941-949
Glycogen synthase kinase 3beta (GSK 3beta) is a key component of several cellular processes including Wnt and insulin signalling pathways. The interaction of GSK3beta with scaffolding peptide axin is thought to be responsible for the effective phosphorylation of beta-catenin, the core effector of Wnt signaling, which has been linked with the occurrence of colon cancer and melanoma. It has been demonstrated that the binding of axin to GSK3beta is abolished by the single-point mutation of Val267 to Gly (V267G) in GSK3beta or Leu392 to Pro (L392P) in axin. Molecular dynamics (MD) simulations were performed on wild type (WT), V267G mutant and L392P one to elucidate the two unbinding mechanisms that occur through different pathways. Besides, rough energy and residue-based energy decomposition were calculated by MM_GBSA (molecular mechanical Generalized_Born surface area) approach to illuminate the instability of the two mutants. The MD simulations of the two mutants and WT reveal that the structure of GSK3beta remains unchanged, while axin moves away from the interfacial hydrophobic pockets in both two mutants. Axin exhibits positional shift in V267G mutant, whereas, losing the hydrogen bonds that are indispensable for stabilizing the helix structure of wild type axin, the helix of axin is distorted in L392P mutant. To conclude, both two mutants destroy the hydrophobic interaction that is essential to the stability of GSK3beta-axin complex.  相似文献   
3.
4.
5.
Purification of GSK-3 by affinity chromatography on immobilized axin   总被引:2,自引:0,他引:2  
Glycogen synthase kinase 3 (GSK-3), an element of the Wnt signalling pathway, plays a key role in numerous cellular processes including cell proliferation, embryonic development, and neuronal functions. It is directly involved in diseases such as cancer (by controlling apoptosis and the levels of beta-catenin and cyclin D1), Alzheimer's disease (tau hyperphosphorylation), and diabetes (as a downstream element of insulin action, GSK-3 regulates glycogen and lipid synthesis). We describe here a rapid and efficient method for the purification of GSK-3 by affinity chromatography on an immobilized fragment of axin. Axin is a docking protein which interacts with GSK-3ss, beta-catenin, phosphatase 2A, and APC. A polyhistidine-tagged axin peptide (residues 419-672) was produced in Escherichia coli and either immobilized on Ni-NTA agarose beads or purified and immobilized on CNBr-activated Sepharose 4B. These "Axin-His6" matrices were found to selectively bind recombinant rat GSK-3 beta and native GSK-3 from yeast, sea urchin embryos, and porcine brain. The affinity-purified enzymes displayed high kinase activity. This single step purification method provides a convenient tool to follow the status of GSK-3 (protein level, phosphorylation state, kinase activity) under various physiological settings. It also provides a simple and efficient way to purify large amounts of active recombinant or native GSK-3 for screening purposes.  相似文献   
6.
Isolation of specific cell types allows one to analyze rare cell populations such as stem/progenitor cells. Such an approach to studying inner ear tissues presents a unique challenge because of the paucity of cells of interest and few transgenic reporter mouse models. Here, we describe a protocol using fluorescence-conjugated probes to selectively label LacZ-positive cells from the neonatal cochleae. The most common underlying pathology of sensorineural hearing loss is the irreversible damage and loss of cochlear sensory hair cells, which are required to transduce sound waves to neural impulses. Recent evidence suggests that the murine auditory and vestibular organs harbor stem/progenitor cells that may have regenerative potential. These findings warrant further investigation, including identifying specific cell types with stem/progenitor cell characteristics. The Wnt signaling pathway has been demonstrated to play a critical role in maintaining stem/progenitor cell populations in several organ systems. We have recently identified Wnt-responsive Axin2-expressing cells in the neonatal cochlea, but their function is largely unknown. To better understand the behavior of these Wnt-responsive cells in vitro, we have developed a method of isolating Axin2-expressing cells from cochleae of Axin2-LacZ reporter mice. Using flow cytometry to isolate Axin2-LacZ positive cells from the neonatal cochleae, we could in turn execute a variety of experiments on live cells to interrogate their behavior as stem/progenitor cells. Here, we describe in detail the steps for the microdissection of neonatal cochlea, dissociation of these tissues, labeling of the LacZ-positive cells using a fluorogenic substrate, and cell sorting. Techniques for dissociating cochleae into single cells and isolating cochlear cells via flow cytometry have been described. We have made modifications to these techniques to establish a novel protocol to isolate LacZ-expressing cells from the neonatal cochlea.  相似文献   
7.
Wnt/β-catenin signalling regulates cell proliferation by modulating the cell cycle and is negatively regulated by conductin/axin2/axil. We show that conductin levels peak at G2/M followed by a rapid decline during return to G1. In line with this, Wnt/β-catenin target genes are low at G2/M and high at G1/S, and β-catenin phosphorylation oscillates during the cell cycle in a conductin-dependent manner. Conductin is degraded by the anaphase-promoting complex/cyclosome cofactor CDC20. Knockdown of CDC20 blocks Wnt signalling through conductin. CDC20-resistant conductin inhibits Wnt signalling and attenuates colony formation of colorectal cancer cells. We propose that CDC20-mediated degradation of conductin regulates Wnt/β-catenin signalling for maximal activity during G1/S.  相似文献   
8.
Wnt信号转导途径是调控细胞形状、运动、黏附、增殖、分化、癌变及机体发育等过程的主要途径之一.Axin(轴蛋白)是一个体轴发育抑制因子,作为构架蛋白在Wnt信号转导途径中起着关键的作用.Axin通过不同的机制调节β连环蛋白的磷酸化和稳定性.它通过与APC、GSK-3β、β连环蛋白和CKIα结合形成复合体促进β连环蛋白的降解,还通过同源二聚化、核质穿梭、自身磷酸化和稳定性的调控来调节β连环蛋白的稳定性.Axin通过Wnt信号转导途径参与了一系列生物学效应的调控,如体轴发育、细胞死亡、神经元的分化等.作为一个新发现的肿瘤抑制因子,axin将为癌症的诊断和治疗提供新的有效的手段.  相似文献   
9.
10.
Glycogen synthase kinase 3beta (GSK3beta) is an essential protein kinase that regulates numerous functions within the cell. One critically important substrate of GSK3beta is the microtubule-associated protein tau. Phosphorylation of tau by GSK3beta decreases tau-microtubule interactions. In addition to phosphorylating tau, GSK3beta is a downstream regulator of the wnt signaling pathway, which maintains the levels of beta-catenin. Axin plays a central role in regulating beta-catenin levels by bringing together GSK3beta and beta-catenin and facilitating the phosphorylation of beta-catenin, targeting it for ubiquitination and degradation by the proteasome. Although axin clearly facilitates the phosphorylation of beta-catenin, its effects on the phosphorylation of other GSK3beta substrates are unclear. Therefore in this study the effects of axin on GSK3beta-mediated tau phosphorylation were examined. The results clearly demonstrate that axin is a negative regulator of tau phosphorylation by GSK3beta. This negative regulation of GSK3beta-mediated tau phosphorylation is due to the fact that axin efficiently binds GSK3beta but not tau and thus sequesters GSK3beta away from tau, as an axin mutant that does not bind GSK3beta did not inhibit tau phosphorylation by GSK3beta. This is the first demonstration that axin negatively affects the phosphorylation of a GSK3beta substrate, and provides a novel mechanism by which tau phosphorylation and function can be regulated within the cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号