首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   38篇
  国内免费   9篇
  2024年   1篇
  2023年   14篇
  2022年   13篇
  2021年   20篇
  2020年   20篇
  2019年   19篇
  2018年   30篇
  2017年   11篇
  2016年   13篇
  2015年   26篇
  2014年   29篇
  2013年   41篇
  2012年   17篇
  2011年   19篇
  2010年   15篇
  2009年   17篇
  2008年   19篇
  2007年   13篇
  2006年   10篇
  2005年   13篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  2001年   8篇
  2000年   8篇
  1999年   8篇
  1998年   8篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1971年   2篇
排序方式: 共有452条查询结果,搜索用时 15 毫秒
1.
Spinal muscular atrophy (SMA) is the most common genetic disease that causes infant mortality. Its treatment and prevention represent the paradigmatic example of the ethical dilemmas of 21st-century medicine. New therapies (nusinersen and AVXS-101) hold the promise of being able to treat, but not cure, the condition. Alternatively, genomic analysis could identify carriers, and carriers could be offered in vitro fertilization and preimplantation genetic diagnosis. In the future, gene editing could prevent the condition at the embryonic stage. How should these different options be evaluated and compared within a health system? In this paper, we discuss the ethical considerations that bear on the question of how to prioritize the different treatments and preventive options for SMA, at a policy level. We argue that despite the tremendous value of what we call ‘ex-post’ approaches to treating SMA (such as using pharmacological agents or gene therapy), there is a moral imperative to pursue ‘ex-ante’ interventions (such as carrier screening in combination with prenatal testing and preimplantation genetic diagnosis, or gene editing) to reduce the incidence of SMA. There are moral reasons relating to autonomy, beneficence and justice to prioritize ex-ante methods over ex-post methods.  相似文献   
2.
Summary Transection of the sciatic nerve in Rhesus monkeys and the consequent transganglionic degenerative atrophy (TDA) of central terminals of primary afferents result in transneuronal degeneration of substantia gelatinosa (SG) cells. Severe degeneration is characterized by an increased electron density of the nucleus and by conspicuous shrinkage of the cytoplasm, mitochondrial swelling, dilation of cisterns of the rough-surfaced endoplasmic reticulum, accumulation of free ribosomes and an electron-dense material in the cytoplasm. In the mild form, dilation of cisternal elements of the endoplasmic reticulum, swollen mitochondria and accumulation of free ribosomes takes place. About 10% of SG cells in segment L5 undergo the severe form whereas the rest shows signs of the mild form. Cytoplasmic alterations that occur during transneuronal degeneration seem to start at the level of subsurface cisterns. Dendrites and axons of transneuronally degenerating SG cells also show a conspicuous electron density. By analyzing the synaptic relationships of such darkened dendrites, connections in the upper dorsal horn can be deciphered. Modular units of the primary nociceptive analyzer that evaluate noxious and innocuous inputs on the basis of thin versus thick (AC/A) afferent activity and subjecting them to descending control appear to be recruited from structurally dispersed elements of synaptic glomeruli. These are arranged alongside dendritic processes of large antenna cells which relay impulses to projection cells of the spinothalamic tract.  相似文献   
3.
Summary The purpose of this study was to develop a nonenzymatic method of isolating adult islets using atrophied pancreata from copper-deficient rats and to analyze their morphologic characteristics and behavior in culture. This unusual model of isolation was studied because islets remain intact in the course of dietary copper deficiency while the acinar glandular component of the pancreas undergoes selective atrophy and lipomatosis. Small fragments containing islets were readily microdissected from atrophied glands and placed in culture. Within 24 h the fragments congealed into small irregular- to spherical-shaped masses within which the darker profile of islets could be distinguished. Within a period of 3 to 5 d, islet tissue began to bud from the lipocytic mass until by Day 7 spherical aggregates of intact islet tissue separated from the residual fragments. Subsequent to further in vitro treatment, these islets could be maintained as free viable spherical masses if periodically agitated, as attached stationary islets which developed monolayer growth if left undisturbed and as aggregated masses of islet tissue forming megaislets if combined in small groups. Grouped islets treated with actinomycin D and cycloheximide did not exhibit aggregation when incubated with these inhibitors. This suggests that megaislet formation was an active process requiring protein-RNA synthesis rather than passive clumping or aggregation that can accompany metabolically altered or dying islets undergoing cellular shedding and adhesion. Immunohistochemical localization demonstrated that insulin, glucagon, somatostatin, and pancreatic polypeptide-immunoreactive cell types were present within the islets derived from this technique. The cellular topography of these islets was not unlike that described by others for islets cultured from enzymatic isolation. This culture model may serve as a resource for mature, viable islets isolated without mechanical or enzymatic disaggregation which can have attenuating effects on islet function. This work was supported by a research grant from the Diabetes Research and Education Foundation.  相似文献   
4.
Benzodiazepine receptor binding was measured in cerebellar cortex of 15 patients with dominantly inherited olivopontocerebellar atrophy (OPCA). The majority of these patients had a moderate to marked Purkinje cell loss, as judged by the lowered levels of dentate nucleus gamma-aminobutyric acid (GABA), a marker of Purkinje cells. Despite the reduction in Purkinje cell number cerebellar cortical benzodiazepine receptor density was either normal or slightly elevated in the OPCA patients. These results are in contrast to the findings in a mutant strain of mice deficient in Purkinje cells in which the concentration of benzodiazepine receptors in cerebellum is greatly reduced. Our data indicate that in the human, cerebellar cortical benzodiazepine receptors are either not significantly associated with Purkinje cells or that in OPCA Purkinje cell loss triggers a de novo synthesis of extra benzodiazepine binding sites. It is concluded that, in contrast with the rodent, in the human benzodiazepine receptor binding may not serve as a marker for cerebellar Purkinje cells.  相似文献   
5.
6.
Several dominantly inherited, late onset, neurodegenerative diseases are due to expansion of CAG repeats, leading to expansion of glutamine repeats in the affected proteins. These proteins are of very different sizes and, with one exception, show no sequence homology to known proteins or to each other; their functions are unknown. In some, the glutamine repeat starts near the N-terminus, in another near the middle and in another near the C-terminus, but regardless of these differences, no disease has been observed in individuals with fewer than 37 repeats, and absence of disease has never been found in those with more than 41 repeats. Protein constructs with more than 41 repeats are toxic to E. coli and to CHO cells in culture, and they elicit ataxia in transgenic mice. These observations argue in favour of a distinct change of structure associated with elongation beyond 37–41 glutamine repeats. The review describes experiments designed to find out what these structures might be and how they could influence the properties of the proteins of which they form part. Poly- -glutamines form pleated sheets of β-strands held together by hydrogen bonds between their amides. Incorporation of glutamine repeats into a small protein of known structure made it associate irreversibly into oligomers. That association took place during the folding of the protein molecules and led to their becoming firmly interlocked by either strand- or domain-swapping. Thermodynamic considerations suggest that elongation of glutamine repeats beyond a certain length may lead to a phase change from random coils to hydrogen-bonded hairpins. Possible mechanisms of expansion of CAG repeats are discussed in the light of looped DNA model structures.  相似文献   
7.
Corticotropin releasing factor (CRF) was recently isolated from ovine hypothalami by its ability to stimulate adrenocorticotropin (ACTH) and β-endorphin release from dispersed rat pituitary cells. Intramuscular injection of synthetic ovine CRF conugated to bovine thyroglobulin with 1-ethyl-3(3-dimethylaminopropyl) carbodiimide and emulsified with Freund's complete adjuvant into a random bred New Zealand white rabbit resulted in antiserum production to CRF associated with adrenal atrophy. A decrease in the level of plasma coticosteroids was associated with an increase in mean total binding of 125I-N-Tyr-CRF. Upon sacrifice, a decrease in pituitary content of ACTH and a decrease in adrenal weight and content of corticosteroids was observed in the rabbit producing antiserum to CRF. Adrenal atrophy was histologically verified with an observed decrease in the adrenal cortical zone not reflected in the zona glomerulosa. Individual cells were relatively larger either with more abundant pale cytoplasm or with distinctly vacuolated cytoplasm. The results presented here are consistent with a physiologically necessary role for this CRF or peptides with similar structures in the hypothalamic-pituitary-adrenal axis.  相似文献   
8.
Summary The response of rat gastrocnemius muscle fibers to chronic streptozotocin-diabetes was studied. Transverse sections of this muscle from normal and diabetic rats were histochemically assayed for reduced diphosphopyridine nucleotide-diaphorase, myofibrillar adenosine triphosphatase, mitochondrial alpha-glycerophosphate dehydrogenase, beta-hydroxybutyrate dehydrogenase, and alkaline phosphatase activities. Cross-sectional areas of the fiber types were measured, and fiber capillarization and populations estimated. Chemically-induced diabetes appeared to have little effect on the metabolic or morphological properties of slow-twitch fibers. However, a general dedifferentiation occurred in the 2 fast-twitch fiber populations. There was a loss of oxidative potential in the fast-twitch-oxidative-glycolytic fibers, and a significant decrease in size in the fast-twitch-glycolytic fibers. No change in the proportions of slow- and fast-twitch fibers in the muscles of diabetic rats occurred. It is concluded that hypoinsulinism has differential effects on the 3 fiber types in heterogeneous rat skeletal muscle, and that slow-twitch fibers are least affected by the diabetic condition.  相似文献   
9.
TGF-β and myostatin are the two most important regulators of muscle growth. Both growth factors have been shown to signal through a Smad3-dependent pathway. However to date, the role of Smad3 in muscle growth and differentiation is not investigated. Here, we demonstrate that Smad3-null mice have decreased muscle mass and pronounced skeletal muscle atrophy. Consistent with this, we also find increased protein ubiquitination and elevated levels of the ubiquitin E3 ligase MuRF1 in muscle tissue isolated from Smad3-null mice. Loss of Smad3 also led to defective satellite cell (SC) functionality. Smad3-null SCs showed reduced propensity for self-renewal, which may lead to a progressive loss of SC number. Indeed, decreased SC number was observed in skeletal muscle from Smad3-null mice showing signs of severe muscle wasting. Further in vitro analysis of primary myoblast cultures identified that Smad3-null myoblasts exhibit impaired proliferation, differentiation and fusion, resulting in the formation of atrophied myotubes. A search for the molecular mechanism revealed that loss of Smad3 results in increased myostatin expression in Smad3-null muscle and myoblasts. Given that myostatin is a negative regulator, we hypothesize that increased myostatin levels are responsible for the atrophic phenotype in Smad3-null mice. Consistent with this theory, inactivation of myostatin in Smad3-null mice rescues the muscle atrophy phenotype.  相似文献   
10.
To maintain homeostasis, every cell must constantly monitor its energy level and appropriately adjust energy, in the form of ATP, production rates based on metabolic demand. Continuous fulfillment of this energy demand depends on the ability of cells to sense, metabolize, and convert nutrients into chemical energy. Mitochondria are the main energy conversion sites for many cell types. Cellular metabolic states dictate the mitochondrial size, shape, function, and positioning. Mitochondrial shape varies from singular discrete organelles to interconnected reticular networks within cells. The morphological adaptations of mitochondria to metabolic cues are facilitated by the dynamic events categorized as transport, fusion, fission, and quality control. By changing their dynamics and strategic positioning within the cytoplasm, mitochondria carry out critical functions and also participate actively in inter-organelle cross-talk, assisting metabolite transfer, degradation, and biogenesis. Mitochondrial dynamics has become an active area of research because of its particular importance in cancer, metabolic diseases, and neurological disorders. In this review, we will highlight the molecular pathways involved in the regulation of mitochondrial dynamics and their roles in maintaining energy homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号