首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2017年   1篇
  2011年   1篇
  2009年   1篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Inflammation in vascular (mostly arterial) walls and heart valves triggered by the trans-endothelial influx of LDL particles and the action of subsequently modified (e.g., by oxidation) LDL particles can trigger true bone formation by valvar fibroblasts, by a subpopulation of re-differentiation-competent VSMCs (vascular smooth muscle cells) or by vascular pericytes. Vascular ossification can lead to heart failure and death. Elderly osteoporotic women who need osteogenic drugs to restore their lost skeletal bone are paradoxically prone to vascular ossification-the "calcification paradox." The recent introduction into the clinic of a potently osteogenic parathyroid hormone peptide, Lilly's rhPTH-(1-34)OH (Forteotrade mark), to reverse skeletal bone loss raises the question of whether this and other potently osteogenic PTHs still in clinical trial might also stimulate vascular ossification in such osteoporotic women. Indeed the VSMCs in human and rat atherosclerotic lesions hyperexpress PTHrP and the PTHR1 (or PTH1R) receptor as do maturing osteoblasts. And the evidence indicates that endogenous PTHrP with its NLS (nuclear/nucleolar localization sequence) does stimulate VSMC proliferation (a prime prerequisite for atheroma formation and ossification) via intranuclear targets that inactivate pRb, the inhibitory G1/S checkpoint regulator, by stimulating its hyperphosphorylation. But neither externally added full-length PTHrP nor the NLS-lacking PTHrP-(1-34)OH gets into the VSMC nucleus and instead they inhibit proliferation and calcification by only activating the cell's PTHR1 receptors. No PTH has an NLS and, as expected from the observations on the externally added PTHrPs, hPTH-(1-34)OH inhibits calcification by VSMCs and cannot stimulate vascular ossification in a diabetic mouse model. Encouraging though this may be for osteoporotics with their "calcification paradox," more work is needed to be sure that the skeletally osteogenic PTHs do not promote vascular ossification with its cardiovascular consequences.  相似文献   
2.
目的通过建立动脉粥样硬化损伤部位细胞模型,观察ApoAI对THP—l源性泡沫细胞ApoE分泌的影响,探讨ApoAI与ApoE之间是否存在相互关系以及这种关系对动脉粥样硬化的影响。方法采用聚乙二醇-6000(PEG-6000)沉淀法制备人血浆HDL,再利用凝胶过滤柱层析法分离ApoA I;佛波酯(PMA)诱导THP-1单核细胞分化为巨噬细胞,氧化型低密度脂蛋白(oxidized low density lipoprotein,OXLDL)使分化后THP-1细胞荷脂,建立动脉粥样硬化细胞模型;ELISA检测不同浓度ApoAI(0,5,10,15,25ug/m1)及不同孵育时间(0.3,6,12,24h),THP—1源性泡沫细胞ApoE的分泌;RT—PCR检测细胞ApoEmRNA的表达情况。结果ApoAI增加THP-1源性泡沫细胞ApoE的分泌量;且ApoE蛋白质的分泌随着ApoAI孵育时间增加而增加,在24hApoE的分泌量达最大;在剂量试验中,ApoE的分泌量随着ApoAI剂量的增加有增加趋势,ApoAI浓度为25μmol/L时,ApoE分泌量最大;而却oE基因的表达不受ApoAI的影响。结论-定浓度的ApoAI促进THP-1源性泡沫细胞ApoE的分泌,且具有时间及剂量依赖性。而在基因水平上,ApoAI对ApoEmRNA表达没有影响。  相似文献   
3.
Despite advances in diagnosis and therapy, atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality in the Western world. Predicting metabolically active atherosclerotic lesions has remained an unmet clinical need. We hereby developed an electrochemical strategy to characterize the inflammatory states of high-risk atherosclerotic plaques. Using the concentric bipolar microelectrodes, we sought to demonstrate distinct Electrochemical Impedance Spectroscopic (EIS) measurements for unstable atherosclerotic plaques that harbored active lipids and inflammatory cells. Using equivalent circuits to simulate vessel impedance at the electrode–endoluminal tissue interface, we demonstrated specific electric elements to model working and counter electrode interfaces as well as the tissue impedance. Using explants of human coronary, carotid, and femoral arteries at various Stary stages of atherosclerotic lesions (n = 15), we performed endoluminal EIS measurements (n = 147) and validated with histology and immunohistochemistry. We computed the vascular tissue resistance using the equivalent circuit model and normalized the resistance to the lesion-free regions. Tissue resistance was significantly elevated in the oxLDL-rich thin-cap atheromas (1.57 ± 0.40, n = 14, p < 0.001) and fatty streaks (1.36 ± 0.28, n = 33, p < 0.001) as compared with lesion-free region (1.00 ± 0.18, n = 82) or oxLDL-absent fibrous atheromas (0.86 ± 0.30, n = 12). Tissue resistance was also elevated in the calcified core of fibrous atheroma (2.37 ± 0.60, n = 6, p < 0.001). Despite presence of fibrous structures, tissue resistance between ox-LDL-absent fibroatheroma and the lesion-free regions was statistically insignificant (0.86 ± 0.30, n = 12, p > 0.05). Hence, we demonstrate that the application of EIS strategy was sensitive to detect fibrous cap oxLDL-rich lesions and specific to distinguish oxLDL-absent fibroatheroma.  相似文献   
4.
Introduction: The application of new proteomics methods may help to identify new diagnostic/predictive molecular markers in an attempt to improve the clinical management of atherosclerosis.

Areas covered: Technological advances in proteomics have enhanced its sensitivity and multiplexing capacity, as well as the possibility of studying protein interactions and tissue structure. These advances will help us better understand the molecular mechanisms at play in atherosclerosis as a biological system. Moreover, this should help identify new predictive/diagnostic biomarkers and therapeutic targets that may facilitate effective risk stratification and early diagnosis, with the ensuing rapid implementation of treatment. This review provides a comprehensive overview of the novel methods in proteomics, including state-of-the-art techniques, novel biological samples and applications for the study of atherosclerosis.

Expert commentary: Collaboration between clinicians and researchers is crucial to further validate and introduce new molecular markers to manage atherosclerosis that are identified using the most up to date proteomic approaches.  相似文献   

1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号