首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1597篇
  免费   161篇
  国内免费   118篇
  2024年   2篇
  2023年   26篇
  2022年   34篇
  2021年   37篇
  2020年   57篇
  2019年   85篇
  2018年   78篇
  2017年   45篇
  2016年   52篇
  2015年   52篇
  2014年   95篇
  2013年   141篇
  2012年   74篇
  2011年   94篇
  2010年   85篇
  2009年   79篇
  2008年   84篇
  2007年   93篇
  2006年   70篇
  2005年   86篇
  2004年   62篇
  2003年   74篇
  2002年   78篇
  2001年   38篇
  2000年   29篇
  1999年   26篇
  1998年   28篇
  1997年   22篇
  1996年   13篇
  1995年   24篇
  1994年   18篇
  1993年   16篇
  1992年   13篇
  1991年   8篇
  1990年   5篇
  1989年   4篇
  1987年   4篇
  1986年   2篇
  1985年   7篇
  1984年   3篇
  1983年   9篇
  1982年   3篇
  1981年   7篇
  1980年   5篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
排序方式: 共有1876条查询结果,搜索用时 15 毫秒
1.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
2.
3.
Dienelactone hydrolase (DLH), an enzyme from the β-ketoadipate pathway, catalyzes the hydrolysis of dienelactone to maleylacetate. Our inhibitor binding studies suggest that its substrate, dienelactone, is held in the active site by hydrophobic interactions around the lactone ring and by the ion pairs between its carboxylate and Arg-81 and Arg-206. Like the cysteine/serine proteases, DLH has a catalytic triad (Cys-123, His-202, Asp-171) and its mechanism probably involves the formation of covalently bound acyl intermediate via a tetrahedral intermediate. Unlike the proteases, DLH seems to protonate the incipient leaving group only after the collapse of the first tetrahedral intermediate, rendering DLH incapable of hydrolyzing amide analogues of its ester substrate. In addition, the triad His probably does not protonate the leaving group (enolate) or deprotonate the water for deacylation; rather, the enolate anion abstracts a proton from water and, in doing so, supplies the hydroxyl for deacylation. © 1993 Wiley-Liss, Inc.  相似文献   
4.
A step leading to the formation of the covalent complexes between porcine pancreatic elastase (PPE) and 7-[(alkylcarbamoyl)amino]-4-chloro-3-ethoxyisocoumarins (alkylHNCO-EICs) is the formation of the noncovalent Michaelis complex. No average structures are available for the Michaelis complexes of PPE with alkylHNCO-EICs. We present the results of an initial step in obtaining these structures and have determined kinetic constants as well. The kinetic results indicate that formation of the Michaelis complex is what differentiates the effectiveness of these inhibitors in inactivating PPE. The structural and kinetic results together suggest that the structure of the Michaelis complex is necessary for the design of potent alkylHNCO-EIC inhibitors of PPE. Two novel alkylHNCO-EICs are predicted to be the best inhibitors of this series. An alternate mechanism for serine protease inhibition is also proposed. Evidence for, and studies that may add support to, the hypothesized mechanism are discussed.  相似文献   
5.
This study examines the optimal seasonal timing of the life cycle for univoltine and bivoltine insects, assuming that resource availability has a peak in the middle of a year and is symmetric around it. Results show that if the growth rate increases in proporrion to the bodyweight, bivoltine life cannot be optimal. If the growth rate is a power function of the bodyweight with a power smaller than unity, a symmetric bivoltine solution can be the optimal provided that the resource availability has a plateau in the middle of the season. If the resource availability has a sharp peak, the optimal pattern is an asymmetric bivoltine solution in which the larval periods of two generations differ in length. The bivoltine life cycle is more likely to be superior to the univoltine one if: growth is fast, suitable growing season is long, biomass loss during nonlarval stages is small, and egg size is small.  相似文献   
6.
Summary Extremely asymmetric nuclear hybrids have been obtained via protoplast fusion in an intergeneric combination. Irradiated (cobalt60,100 krad) kanamycinresistant Petunia hybrida mesophyll protoplasts were chemically fused with wild-type mesophyll protoplasts of Nicotiana plumbaginifolia. Eighty-six hybrid colonies were selected on kanamycin-containing medium, and twenty-four of these could be induced to regenerate numerous shoots. Cytological analysis of the regenerants showed the presence of a few chromosome fragments in some lines, and even a metacentric chromosome in yet another line. Besides additional chromosome fragments some lines only possessed typical Nicotiana chromosomes, and this at the diploid (2n = 2X = 20) as well as the tetraploid (2n = 2X = 40) level. Biochemical analysis showed that all regenerants had neomycin phosphotransferase activity (NPTII), which suggests that intergenomic recombination and or translocation events took place at least in those lines where no additional chromosome fragments could be detected. The presence of the NPTII gene was shown by Southern hybridization. All regenerants tested were fertile, and the segregation ratios for the kanamycin gene (for self and backcross pollinations to the recipient partner) for some of the regenerants correspond with Mendelian rules for a monogenic dominant marker. Most of the regenerants showed abnormal segregation ratios; in this case, no correlation could be made between segregation ratio and chromosome composition.Our results demonstrate the existence of intergenomic recombination and translocations evens in nuclear somatic hybrid plants obtained via gamma-fusion.  相似文献   
7.
The relative roles of the two structural aspects of nonenzymic glycation sites of hemoglobin A, namely the ease with which the amino groups could form the aldimine adducts and the propensity of the microenvironments of the respective aldimines to facilitate the Amadori rearrangement, in dictating the site selectivity of nonenzymic glycation with aldotriose has been investigated. The chemical reactivity of the amino groups of hemoglobin A forin vitro reductive glycation with aldotriose is distinct from that in the nonreductive mode. The reactivity of amino groups of hemoglobin A toward reductive glycation (i.e., propensity for aldimine formation) decreases in the order Val-1(), Val-1(), Lys-66(), Lys-61(), and Lys-16(). The overall reactivity of hemoglobin A toward nonreductive glycation decreased in the order Lys-16(), Val-1(), Lys-66(), Lys-82(), Lys-61(), and Val-1(). Since the aldimine is the common intermediate for both the reductive and nonreductive modification, the differential selectivity of protein for the two modes of glycation is clearly a reflection of the propensity of the microenvironments of nonenzymic glycation sites to facilitate the isomerization reaction (i.e., Amadori rearrangement). A semiquantitative estimate of this propensity of the microenvironment of the nonenzymic glycation sites has been obtained by comparing the nonreductive (nonenzymic) and reductive modification at individual glycation sites. The microenvironment of Lys-16() is very efficient in facilitating the rearrangement and the relative efficiency decreases in the order Lys-16(), Lys-82(), Lys-66(), Lys-61(), Val-1(), and Val-1(). The propensity of the microenvironment of Lys-16() to facilitate the Amadori rearrangement of the aldimine is about three orders of magnitude higher than that of Val-1() and is about 50 times higher than that of Val-1(). The extent of nonenzymic glycation at the individual sites is modulated by various factors, such as thepH, concentration of aldotriose, and the concentration of the protein. The nucleophiles—such as tris, glycine ethyl ester, and amino guanidine—inhibit the glycation by trapping the aldotriose. The nonenzymic glycation inhibitory power of nucleophile is directly related to its propensity to form aldimine. Thus, the extent of inhibition of nonenzymic glycation at a given site by a nucleophile directly reflects the relative role ofpK a of the site in dictating the glycation at that site. The nonenzymic glycation of an amino group of a protein is an additive/synergestic consequence of the propensity of the site to form aldimine adducts on one hand, and the propensity of its microenvironment to facilitate the isomerization of the aldimines to ketoamines on the other. The isomerization potential of microenvironment plays the dominant role in dictating the site specificity of the nonenzymic glycation of proteins.  相似文献   
8.
3-Phosphoglycerate kinase (ATP:3-phospho-d-glycerate 1-phosphotransferase, EC 2.7.2.3) has been covalently immobilized on a polyacrylamide-type support containing carboxylic groups activated by water-soluble carbodiimide. The activity was 88 units g?1 xerogel. The activity versus pH profile showed a sharper maximum at pH 6.5 in the case of the immobilized enzyme. The immobilized enzyme had a broad apparent optimum temperature range between 40 and 50°C. The apparent Km values of the immobilized 3-phosphoglycerate kinase were lower for both 3-phosphoglycerate and ATP than those of the soluble enzyme. In the case of the immobilized enzyme stabilities were enhanced.  相似文献   
9.
APOBEC(“载脂蛋白质B mRNA编辑催化多肽”)是一类进化保守的胞苷脱氨酶家族。在人体内,已知含有保守的DNA胞嘧啶脱氨酶结构域的基因共有11种,包括AID、APOBEC1、APOBEC2、APOBEC3基因家族APOBEC3A、APOBEC3B、APOBEC3C、APOBEC3DE、APOBEC3F、APOBEC3G、APOBEC3H(分别称为A3A、A3B、A3C、A3D、A3F、A3G和A3H)和APOBEC4。APOBEC利用其脱氨酶活性通过与RNA和/或DNA结合,催化mRNA或使DNA中的胞嘧啶核苷酸转变为尿嘧啶,或者胞嘧啶核苷酸转变为胸腺嘧啶核苷酸,进而完成各自不同的功能。目前研究发现,AID及APOBEC3(A3s)的7种脱氨酶在人类的天然免疫和适应性免疫防御过程中发挥重要的作用,且在口腔癌,肺癌(腺癌和鳞状细胞癌),结直肠癌和乳腺癌等的诊疗过程中具有重要的潜在应用价值。AID可以通过将胞嘧啶脱氨基成尿嘧啶,来启动SHM (体细胞超突变)和CSR (类别转换重组),进而在抗体多样性方面发挥作用。它的异常表达能够使B细胞淋巴瘤等恶性肿瘤的发病频率显著增加。而A3A、A3B通过胞嘧啶到尿嘧啶转换,以及自身表达量上调而在乳腺癌和肺癌诊疗中起作用。A3G通过APOBEC3G/miR 29/MMP2为了解结直肠癌肝转移和开发治疗晚期结肠癌的有效疗法开辟了新的途径。综上所述,本文将以AID,A3A,A3B,A3G为例子,对APOBEC在癌症诊断和治疗方面的应用进行综述,以期为进一步药物研究和临床应用等提供参考。  相似文献   
10.
We have previously given evidence that the hypoxanthine-guanine phosphoribosyltransferase (HGPRT; EC 2.4.2.8) isozymes in human erythroid cells result from posttranslational modifications of a single gene product [Johnson, G. G., et al. (1982). Biochemistry 21:960]. In the present work we compare the properties of the unmodified and two major modified isozymes, which collectively account for 90% of the HGPRT enzyme activity in cell lysates. The modified isozymes differ from the parent molecule in the pH dependence of activity and in the relative utilization of the two purine base substrates, hypoxanthine and guanine. In contrast to the changes in the catalytic properties of the enzyme, the modifications have no detectable effects on the heat stability or on the equilibrium between enzyme dimers and enzyme tetramers.This work was supported by United States Public Health Service Grant 5 RO1 CA 16754-03 and by the San Diego State University Foundation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号