首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   670篇
  免费   18篇
  国内免费   6篇
  2023年   3篇
  2022年   4篇
  2021年   6篇
  2020年   4篇
  2019年   8篇
  2018年   10篇
  2017年   7篇
  2016年   16篇
  2015年   11篇
  2014年   33篇
  2013年   74篇
  2012年   19篇
  2011年   43篇
  2010年   11篇
  2009年   19篇
  2008年   26篇
  2007年   30篇
  2006年   38篇
  2005年   24篇
  2004年   30篇
  2003年   33篇
  2002年   26篇
  2001年   19篇
  2000年   15篇
  1999年   16篇
  1998年   17篇
  1997年   25篇
  1996年   15篇
  1995年   12篇
  1994年   12篇
  1993年   13篇
  1992年   11篇
  1991年   7篇
  1990年   11篇
  1989年   7篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   4篇
  1975年   1篇
  1973年   4篇
排序方式: 共有694条查询结果,搜索用时 15 毫秒
1.
To evaluate the influence of cell density on the activity of fibroblast prolidase (EC 3.4.13.9), we determined this activity in sparse and dense cultures. We also investigated, the effects of different concentrations of β-d(?) fructose and l(+) ascorbate, which both increased cell density at confluency. For a fructose concentration of 25 mM, we observed that in the absence of glucose, intracellular total proteins increased 1.5-fold and prolidase specific activity, 1.8-fold. For ascorbate, a broad optimum concentration was found (range 0.01 – 0.50 mM). Addition to cultures of 0.1 mM ascorbate increased total proteins 1.4-fold, and doubled prolidase activity. This investigation was prompted by our previous results [J. Metab. Dis. 1983, 6, 27–31], confirmed here, and suggesting that increased prolidase activity at confluency was due to a rise in cell density.  相似文献   
2.
Growth of Phanerochaete chrysosporium in a nitrogen-limited medium buffered with sodium acetate, instead of the commonly used 2,2-dimethylsuccinate (DMS), resulted in quantitative and qualitative differences in the production of various extracellular lignin peroxidases (LIPs) and manganese-dependent peroxidases (MNPs) involved in lignin degradation. The results indicate that production of LIPs and MNPs can be selectively enhanced by manipulation of culture conditions. Partial N-terminal analyses of the major LIPs and MNPs have made it possible to assign a specific protein to the specific genes and cDNAs that have been reported recently. The LIPs and MNPs differed widely in their ability to decolorize various dyes that are known to be degraded by the lignin degrading enzyme system of P. chrysosporium.  相似文献   
3.
The effect of ascorbic acid on growth and shoot formation in callus cultures of tobacco (Nicotiana tabacum L.) was investigated, using young (4–12 subcultures) and old (more than 30 subcultures) tissue. It was found that ascorbate, at levels of 4–8×10-4M, enhanced shoot formation in both young and old callus. Treatment with ascorbate also speeded up the shoot-forming process. In addition, ascorbate completely reversed the inhibition of shoot formation by gibberellic acid in young callus, but was less effective in old callus.  相似文献   
4.
Three enzymes, cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4], d-glucose oxidase (β-d-glucose: oxygen 1-oxidoreductase, EC 1.1.3.4) and peroxidase (donor:hydrogen peroxide oxidoreductase, EC 1.11.1.7) immobilized on glass beads, have been incubated with lignocellulose. Fungal peroxidases from Trametes versicolor and Inonotus radiatus when mixed with cellulase and d-glucose oxidase were able to liberate phenolic compounds and d-glucose from lignocellulose. Three lignin monomers were identified. When the immobilized enzymes were incubated individually with lignocellulose they did not degrade lignin.  相似文献   
5.
phenazine methosulfate (PMS) stimulates ouabain-sensitive Rb+ uptake by HeLa cells. This stimulation cannot be attributed to the effect of the dye on the intracellular Na+ or ATP content. Respiratory inhibitors, such as 5 mM NaCN and 5 microM rotenone, and anaerobic conditions enhance the stimulation of Rb+ uptake by PMS. Cellular respiration is stimulated, but lactate production is reduced in the presence of PMS, irrespective of the presence of respiratory inhibitors. Cellular NADH is oxidized markedly on addition of PMS plus inhibitors, but it is not affected by addition of the inhibitors only. In the presence of a high concentration of PMS, PMS-stimulated ouabain-sensitive Rb+ uptake is inhibited by addition of ascorbate. From these results it is concluded that Na+K-pump activity is closely related to the cellular redox state.  相似文献   
6.
Abstract. In experiments where mung beans ( Vigna radiata L.) and peas ( Pisum sativum L.) have been pre-exposed to ethylene and afterwards treated with ozone, it has been shown that such ethylenepretreated plants may become more resistant to ozone. Further experiments with hydrogen peroxide (H2O2) and the herbicide paraquat suggest that this increased resistance against ozone depends on the stimulation of ascorbate peroxidase activity which provides cells with increased resistance against the formation of H2O2 which is also formed when plants are fumigated with ozone. These results explain why increased production of ethylene can be observed in plants exposed with ozone or other oxidative stress and clearly demonstrate that in plants, as well as animals, peroxidases protect cells against harmful concentrations of hydroperoxides.  相似文献   
7.
Incubation of rat-liver microsomes, previously azide-treated to inhibit catalase, with H2O2 caused a loss of cytochrome P-450 but not of cytochrome b5. This loss of P-450 was not prevented by scavengers of hydroxyl radical, chain-breaking antioxidants or metal ion-chelating agents. Application of the thiobarbituric acid (TBA) assay to the reaction mixture suggested that H2O2 induces lipid peroxidation, but this was found to be due largely or completely to an effect of H2O2 on the TBA assay. By contrast, addition of ascorbic acid and Fe(III) to the microsomes led to lipid peroxidation and P-450 degradation: both processes were inhibited by chelating agents and chain-breaking antioxidants, but not by hydroxyl radical scavengers. H2O2 inhibited ascorbate/Fe (III)-induced microsomal lipid peroxidation, but part of this effect was due to an action of H2O2 in the TBA test itself. H2O2 also decreased the colour measured after carrying out the TBA test upon authentic malondialdehyde, tetraethoxypropane, a DNA-Cu2+/o-phenanthroline system in the presence of a reducing agent, ox-brain phospholipid liposomes in the presence of Fe(III) and ascorbate, or a bleomycin-iron ion/DNA/ascorbate system. Caution must be used in interpreting the results of TBA tests upon systems containing H2O2.  相似文献   
8.
Most carcinogens, including polycyclic aromatic hydrocarbons (PAH), require metabolic activation to produce the ultimate electrophilic species that bind covalently with cellular macromolecules to trigger the cancer process. Metabolic activation of PAH can be understood in terms of two main pathways: one-electron oxidation to yield reactive intermediate radical cations and monooxygenation to produce bay-region diol epoxides. The reason we have postulated that one-electron oxidation plays an important role in the activation of PAH derives from certain common characteristics of the radical cation chemistry of the most potent carcinogenic PAH. Two main features common to these PAH are: 1) a relatively low ionization potential, which allows easy metabolic removal of one electron, and 2) charge localization in the PAH radical cation that renders this intermediate specifically and efficiently reactive toward nucleophiles. Equally important, cytochrome P-450 and mammalian peroxidases catalyze one-electron oxidation. This mechanism plays a role in the binding of PAH to DNA. Chemical, biochemical and biological evidence will be presented supporting the important role of one-electron oxidation in the activation of PAH leading to initiation of cancer.  相似文献   
9.
This study has investigated the kinetics and mechanism of ultraweak luminescence in maize roots. Mannitol induced the second maximum and enhanced the main maximum of the relative intensity of luminescence from the roots. Hydroquinone and quinone enhanced the relative intensity of the luminescence. Catalase enhanced the maximum of the luminescence and changed the kinetics of the light emission. The effect of catalase on the kinetics was abolished by superoxide dismutase. Ascorbate in the presence of catalase reduced the luminescence maximum, but did not alter the kinetics. In the presence of catalase only, or in the combination with superoxide dismutase, or ascorbate, the luminescence intensity in the stationary phase was significantly lower compared to the control. The results support the participation of superoxide-radical, singlet oxygen, electron transfer and the role of peroxidase in the reactions generating ultraweak luminescence in the roots. Ascorbate, catalase and superoxide dismutase have a protective role in the luminescent reactions.  相似文献   
10.
Effect of removal of snow cover in winter was investigated in an 80-year-old sugar maple (Acer saccharum Marsh.) stand in southern Quebec. We hypothesized that winter soil frost would induce some of the decline symptoms observed in sugar maple stands in southern Quebec in the early 1980's. Snow was continuously removed from around trees for a one week (partial removal) or for a four-month period (complete removal) during the 1990–1991 winter. Foliage and soils were sampled periodically during the summer of 1991. The complete snow removal treated trees showed decreased leaf water potential and increased peroxidase activity over most of the growing season. Foliar Ca was reduced in both snow removal treatments early in the growing season while foliar N was reduced in the complete snow removal trees late in the growing season. Soil NO 3 and K+ were elevated in both snow removal treatments at various times throughout the growing season. Prolonged soil frost in a sugar maple stand can induce lower leaf water potential, higher leaf peroxidase activity and early leaf senescence during the following growing season. Soil frost may have reduced nutrient uptake without affecting significantly the leaf nutrient status.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号