首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2018年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
The incorporation of poly(ethylene glycol) (PEG)-conjugated lipids in lipid-based carriers substantially prolongs the circulation lifetime of liposomes. However, the mechanism(s) by which PEG-lipids achieve this have not been fully elucidated. It is believed that PEG-lipids mediate steric stabilization, ultimately reducing surface-surface interactions including the aggregation of liposomes and/or adsorption of plasma proteins. The purpose of the studies described here was to compare the effects of PEG-lipid incorporation in liposomes on protein binding, liposome-liposome aggregation and pharmacokinetics in mice. Cholesterol-free liposomes were chosen because of their increasing importance as liposomal delivery systems and their marked sensitivity to protein binding and aggregation. Specifically, liposomes containing various molecular weight PEG-lipids at a variety of molar proportions were analyzed for in vivo clearance, aggregation state (size exclusion chromatography, quasi-elastic light scattering, cryo-transmission and freeze fracture electron microscopy) as well as in vitro and in vivo protein binding. The results indicated that as little as 0.5 mol% of 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE) modified with PEG having a mean molecular weight of 2000 (DSPE-PEG2000) substantially increased plasma circulation longevity of liposomes prepared of 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). Optimal plasma circulation lifetimes could be achieved with 2 mol% DSPE-PEG2000. At this proportion of DSPE-PEG2000, the aggregation of DSPC-based liposomes was completely precluded. However, the total protein adsorption and the protein profile was not influenced by the level of DSPE-PEG2000 in the membrane. These studies suggest that PEG-lipids reduce the in vivo clearance of cholesterol-free liposomal formulations primarily by inhibition of surface interactions, particularly liposome-liposome aggregation.  相似文献   
2.
Free fatty acid-2 (FFA2) receptor is a G-protein coupled receptor of interest in the development of therapeutics in metabolic and inflammatory disease areas. The discovery and optimization of an N-thiazolylamide carboxylic acid FFA2 agonist scaffold is described. Dual key objectives were to i) evaluate the potential of this scaffold for lead optimization in particular with respect to safety de-risking physicochemical properties, i.e. lipophilicity and aromatic content, and ii) to demonstrate the utility of selected lead analogues from this scaffold in a pertinent in vivo model such as oral glucose tolerance test (OGTT). As such, a concomitant improvement in bioactivity together with lipophilic ligand efficiency (LLE) and fraction sp3 content (Fsp3) parameters guided these efforts. Compound 10 was advanced into studies in mice on the basis of its optimized profile vs initial lead 1 (ΔLLE?=?0.3, ΔFsp3?=?0.24). Although active in OGTT, 10 also displayed similar activity in the FFA2-knockout mice. Given this off-target OGTT effect, we discontinued development of this FFA2 agonist scaffold.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号