首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  2008年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.

Background and Aims

The hypothesis of an ancient introduction, i.e. archaeophyte origin, is one of the most challenging questions in phylogeography. Arundo donax (Poaceae) is currently considered to be one of the worst invasive species globally, but it has also been widely utilzed by man across Eurasia for millennia. Despite a lack of phylogenetic data, recent literature has often speculated on its introduction to the Mediterranean region.

Methods

This study tests the hypothesis of its ancient introduction from Asia to the Mediterranean by using plastid DNA sequencing and morphometric analysis on 127 herbarium specimens collected across sub-tropical Eurasia. In addition, a bioclimatic species distribution model calibrated on 1221 Mediterranean localities was used to identify similar ecological niches in Asia.

Key Results

Despite analysis of several plastid DNA hypervariable sites and the identification of 13 haplotypes, A. donax was represented by a single haplotype from the Mediterranean to the Middle East. This haplotype is shared with invasive samples worldwide, and its nearest phylogenetic relatives are located in the Middle East. Morphometric data characterized this invasive clone by a robust morphotype distinguishable from all other Asian samples. The ecological niche modelling designated the southern Caspian Sea, southern Iran and the Indus Valley as the most suitable regions of origin in Asia for the invasive clone of A. donax.

Conclusions

Using an integrative approach, an ancient dispersion of this robust, polyploid and non-fruiting clone is hypothesized from the Middle East to the west, leading to its invasion throughout the Mediterranean Basin.  相似文献   
2.
3.
Aim Human activities have weakened biogeographical barriers to dispersal, increasing the rate of introduction of alien plants. However, their impact on beta diversity and floristic homogenization is poorly understood. Our goal is to compare the phylogenetic beta diversity of native species with that of two groups of alien species, archaeophytes and neophytes (introduced before and after ad 1500, respectively), across European urban floras to explore how biological invasions affect phylogenetic turnover at a continental scale. Location Twenty European cities located in six countries between 49 and 53° N latitude in continental Europe and the British Isles. Methods To compare the phylogenetic beta diversity of native and alien species we use the average phylogenetic dissimilarity of individual floras from their group centroid in multivariate space. Differences in phylogenetic beta diversity among different species groups are then assessed using a randomization test for homogeneity of multivariate dispersions. Results Across European urban floras, and when contrasted with natives, archaeophytes are usually associated with lower levels of phylogenetic beta diversity while neophytes tend to increase phylogenetic differentiation. Main conclusions While archaeophytes tend to promote limited homogenization in phylogenetic beta diversity, because of their diverse geographical origin together with short residence times in the invaded regions, neophytes are not promoting biotic homogenization of urban floras across Europe. Therefore, in spite of the increasing rate of alien invasion, an intense phylogenetic homogenization of urban cities is not to be expected soon.  相似文献   
4.
Aim We examine how two categories of non‐native species (archaeophyte and neophyte, introduced before and after ad 1500, respectively) have had different impacts on β diversity across European urban floras. Our goal is to use the unique biological perspective provided by urban areas, and the contrasting historical and geographical perspectives provided by archaeophytes and neophytes, to infer how non‐native species will impact upon β diversity in the future. Location Twenty‐two urban areas located in seven European countries. Methods We used the β‐sim dissimilarity index to estimate the level of β diversity for 231 unique pair‐wise combinations of 22 urban floras. We examined bivariate plots of dissimilarity by geographical separation of city centres to evaluate distance decay of similarity for native species, archaeophytes and neophytes. Results Based on average percentages, 52.8% (SD = 8.2%) of species in the urban floras were identified as non‐native with 28.3% (SD = 6.9%) classified as neophytes and 24.5% (SD = 4.9%) as archaeophytes. Relative to native species, across urban floras, archaeophytes were associated with higher compositional similarity and weaker distance decay patterns, whereas neophytes were associated with lower compositional similarity and stronger distance decay patterns. Main conclusions Across European urban floras, archaeophytes and neophytes occurred in similar numbers but archaeophytes were consistently associated with lower β diversity and neophytes with higher β diversity. Thus, the impact of non‐native species on β diversity can be determined, at least in part, through their historical and geographical associations with anthropogenic activities. If archaeophytes represent the long‐term biogeographical outcome for human commensal species, neophytes could develop similar patterns. The consequences, however, are likely to be more substantial ecologically and geographically due to the increasing numbers of neophytes and their global anthropogenic associations. Nevertheless, at present, our findings suggest that, based on occurrence information, neophytes have not achieved this state with European urban floras retaining regionally distinct assemblages of neophytes.  相似文献   
5.
1.  Understanding the mechanisms that affect invasion success of alien species is a major issue in current ecological research. Although many studies have searched for either functional or habitat attributes that drive invasion mechanisms, few researchers have addressed the role of phylogenetic diversity of alien species.
2.  Here, using data from 21 urban floras located in Europe and eight in the USA, we show that the phylogenetic diversity of alien species is significantly lower than that of native species, both at the continental scale and at the scale of single cities.
3.  Second, we show that if archaeophytes and neophytes (non-native species introduced into Europe before and after AD 1500, respectively) are analysed separately, archaeophytes show lower phylogenetic diversity than neophytes, while the phylogenetic structure of neophytes is indistinguishable from a random sample of species from the entire species pool.
4.  Our results suggest that urban aliens are subject to environmental filters that constrain their phylogenetic diversity, although these filters act more strongly upon archaeophytes than neophytes.
5.   Synthesis. Despite the huge taxonomic diversity of plants imported into European and American cities, the strong environmental filters imposed by cities constrain the functional diversity of urban floras, which is reflected in their generally low phylogenetic diversity. Urban alien floras are mainly composed of phylogenetically related species that are well adapted to anthropogenic habitats, although these filters are stronger for species groups with longer residence times.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号