首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1998年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Extreme environmental conditions have been thought to limit algal growth in the upper sea-ice. In McMurdo Sound, Antarctica, chrysophyte statocysts (stomatocysts) and dinoflagellate hypnozygotes (resting cysts) overwinter in first- and second-year land-fast sea-ice exposed to temperatures of -20° C or lower. In early November, when temperatures in the upper ice are < ?8°C and brine salinities are >126 psu, dinoflagellate cysts activate and shortly thereafter excyst. During early November, chrysophyte statocysts also begin to excyst. Net daily primary production occurs in the sea-ice brine at temperatures as low as ?7.1° C, at brine salinities as high as 129 psu, and at average photon flux densities as low as 5 μmol photons.m?2.s?1. Dinoflagellate densities were >106 vegetative cells.L?1 of ice while temperatures in the upper ice were between ?6.8 and ?5.8° C and brine salinities were ~100 psu. Chrysophyte densities reached >106.L?1 of ice by early December. High densities of physiologically active clyo- and halotolerant algae can occur in the upper land-fast sea-ice under extreme conditions of temperature and salinity.  相似文献   
2.
The population dynamics of interior ice microalgae were investigated at a snow-free site on annual land-fast sea ice in McMurdo Sound, Antarctica, during the austral spring and summer of 1995 – 96. A dynamic successional sequence was observed with life history transformations playing an important role. During late November and early December (austral spring), cryo- and halotolerant dinoflagellates and chrysophytes bloomed in brine channels within the upper ice. At this time, competition and grazing pressure are low because of the inability of most marine species to grow under the extreme environmental conditions found in the upper ice during the austral spring. In November and December, dinoflagellates, chrysophytes, and prasinophytes contributed an average of 66%, 44%, and < 1% of the phytoflagellate biomass, respectively. Both the dinoflagellates and the chrysophytes encysted in December, with cyst formation most intense just prior to surface melt and flushing of the ice. The cysts appear to be an adaptation for survival and dispersal in the plankton during ice decay and/or overwintering in the sea ice. In January (austral summer), when ice temperatures were similar to those in the water column, pennate diatoms replaced flagellates as the photosynthetic dominants in the upper sea ice. The upper land-fast sea ice undergoes dramatic seasonal changes in light availability, temperature, brine salinity, and inorganic nutrient availability. Ephemeral blooms of cyst-forming phytoflagellates exploit this habitat in the austral spring, when both inorganic nutrients and light are available but temperatures <− 2° C and brine salinities elevated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号