首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   1篇
  11篇
  2019年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2001年   2篇
  2000年   2篇
  1990年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Plants acquire essential mineral nutrients such as phosphorus (P) and nitrogen (N) directly from the soil, but the majority of the vascular plants also gain access to these mineral nutrients through endosymbiotic associations with arbuscular mycorrhizal (AM) fungi. In AM symbiosis, the fungi deliver P and N to the root through branched hyphae called arbuscules. Previously we identified MtPT4, a Medicago truncatula phosphate transporter located in the periarbuscular membrane that is essential for symbiotic phosphate transport and for maintenance of the symbiosis. In mtpt4 mutants arbuscule degeneration occurs prematurely and symbiosis fails. Here, we show that premature arbuscule degeneration occurs in mtpt4 mutants even when the fungus has access to carbon from a nurse plant. Thus, carbon limitation is unlikely to be the primary cause of fungal death. Surprisingly, premature arbuscule degeneration is suppressed if mtpt4 mutants are deprived of nitrogen. In mtpt4 mutants with a low N status, arbuscule lifespan does not differ from that of the wild type, colonization of the mtpt4 root system occurs as in the wild type and the fungus completes its life cycle. Sulphur is another essential macronutrient delivered to the plant by the AM fungus; however, suppression of premature arbuscule degeneration does not occur in sulphur-deprived mtpt4 plants. The mtpt4 arbuscule phenotype is strongly correlated with shoot N levels. Analyses of an mtpt4-2 sunn-1 double mutant indicates that SUNN, required for N-mediated autoregulation of nodulation, is not involved. Together, the data reveal an unexpected role for N in the regulation of arbuscule lifespan in AM symbiosis.  相似文献   
2.
Chromium (Cr) is a heavy metal risk to human health, and a contaminant found in agricultural soils and industrial sites. Phytoremediation, which relies on phytoextraction of Cr with biological organisms, is an important alternative to costly physical and chemical methods of treating contaminated sites. The ability of the arbuscular mycorrhizal fungus (AM),Glomus intraradices, to enhance Cr uptake and plant tolerance was tested on the growth and gas exchange of sunflower (Helianthus annuus L.). Mycorrhizal-colonized (AM) and non-inoculated (Non-AM) sunflower plants were subjected to two Cr species [trivalent cation (Cr3+) Cr(III) , and divalent dichromate anion (Cr2O7) Cr(VI) ]. Both Cr species depressed plant growth, decreased net photosynthesis (A) and increased the vapor pressure difference; however, Cr(VI) was more toxic. Chromium accumulation was greatest in roots, intermediate in stems and leaves, and lowest in flowers. Greater Cr accumulation occurred with Cr(VI) than Cr(III). AM enhanced the ability of sunflower plants to tolerate and hyperaccumulate Cr. At higher Cr levels greater mycorrhizal dependency occurred, as indicated by proportionally greater growth, higherA and reduced visual symptoms of stress, compared to Non-AM plants. AM plants had greater Cr-accumulating ability than Non-AM plants at the highest concentrations of Cr(III) and Cr(VI), as indicated by the greater Cr phytoextraction coefficient. Mycorrhizal colonization (arbuscule, vesicle, and hyphae formation) was more adversely affected by Cr(VI) than Cr(III), however high levels of colonization still occurred at even the most toxic levels. Arbuscules, which play an important role in mineral ion exchange in root cortical cells, had the greatest sensitivity to Cr toxicity. Higher levels of both Cr species reduced leaf tissue phosphorus (P). While tissue P was higher in AM plants at the highest Cr(III) level, tissue P did not account for mycorrhizal benefits observed with Cr(VI) plants.  相似文献   
3.
S. Burleigh 《Plant and Soil》2000,226(2):287-292
Until recently little was known about the identity of the genes expressed in the arbuscules of mycorrhizas, due in part to problems associated with cloning genes from the tissues of an obligate symbiont. However, the combination of advanced molecular techniques, innovative use of the materials available and fortuitous cloning has resulted in the recent identification of a number of arbuscule-related genes. This article provides a brief summary of the genes involved in arbuscule development, function and regulation, and the techniques used to study them. Molecular techniques include differential screening, differential display and screening with heterologous probes, and can involve the use of mycorrhizal plant mutants. New technologies such as proteome analysis are also discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
4.
长期定位施肥土壤中AM真菌对寄主植物的侵染状况   总被引:3,自引:0,他引:3  
分别于2003年9月和2004年5月在莱阳农学院长期(26年)定位施肥试验田采集玉米和小麦根系,以测定不同施肥处理对丛枝菌根(AM)真菌侵染状况的影响。结果表明长期定位施氮(N)肥显著降低了AM真菌对寄主植物的侵染率(MCP)、丛枝着生率(ACP)、单位根长泡囊数(NV)和侵入点数(NE)。高N处理的小麦MCP低于低N处理,高N处理的玉米ACP低于低N处理。长期定位施有机肥,尤其是高有机肥处理显著降低了MCP、ACP和NE。有机肥和N肥配施也降低了MCP、ACP、NV和NE,以高有机肥和高N肥配施处理的降低效应最大。除小麦根系NV外,长期定位NPK配合施用降低了玉米和小麦的MCP、ACP、NV和NE。其中,以NP处理的玉米ACP、小麦的MCP和ACP最低。另外,低有机肥与N肥配施和NPK配施处理条件下玉米MCP高于小麦。结论认为不同施肥体制对作物菌根生长发育及其结构具有不同影响,而且有机肥和N肥在影响AM真菌侵染方面存在互作。  相似文献   
5.
Arbuscular mycorrhizal (AM) symbiosis is a widespread mutualism formed between vascular plants and fungi of the Glomeromycota. In this endosymbiosis, fungal hyphae enter the roots, growing through epidermal cells to the cortex where they establish differentiated hyphae called arbuscules in the cortical cells. Reprogramming of the plant epidermal and cortical cells occurs to enable intracellular growth of the fungal symbiont; however, the plant genes underlying this process are largely unknown. Here, through the use of RNAi, we demonstrate that the expression of a Medicago truncatula gene named Vapyrin is essential for arbuscule formation, and also for efficient epidermal penetration by AM fungi. Vapyrin is induced transiently in the epidermis coincident with hyphal penetration, and then in the cortex during arbuscule formation. The Vapyrin protein is cytoplasmic, and in cells containing AM fungal hyphae, the protein accumulates in small puncta that move through the cytoplasm. Vapyrin is a novel protein composed of two domains that mediate protein–protein interactions: an N‐terminal VAMP‐associated protein (VAP)/major sperm protein (MSP) domain and a C‐terminal ankyrin‐repeat domain. Putative Vapyrin orthologs exist widely in the plant kingdom, but not in Arabidopsis, or in non‐plant species. The data suggest a role for Vapyrin in cellular remodeling to support the intracellular development of fungal hyphae during AM symbiosis.  相似文献   
6.
7.
8.
9.
Putative sites for nutrient uptake in arbuscular mycorrhizal fungi   总被引:2,自引:0,他引:2  
Berta Bago 《Plant and Soil》2000,226(2):263-274
Nutrition of the arbuscular mycorrhiza (AM) is addressed from a fungal point of view. Intraradical and extraradical structures proposed as preferential sites for nutrient acquisition in arbuscular mycorrhizal (AM) fungi are considered, and their main features compared. This comparison includes the formation and function of branched structures (either intra- or extraradical) as putative nutrient uptake sites with unique morphological and physiological features in the AM fungal colony. The morphology and functioning of these structures are further affected by intra- or extraradical environmental factors. A model is presented which portrays the intrinsic developmental and physiological duality of the AM fungus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号