首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   4篇
  国内免费   1篇
  2020年   3篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2003年   2篇
  2002年   2篇
  2000年   3篇
  1999年   3篇
  1995年   1篇
  1991年   1篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
排序方式: 共有57条查询结果,搜索用时 312 毫秒
1.
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.  相似文献   
2.
3.
The synthesis of polyfunctionalized delta-lactams as key intermediates of glycomimetics in the 2-acetamido-2-deoxy sugar series is presented. Starting from a chiral gamma-amino vinylic ester synthesized from Garner's aldehyde and after regioselective reduction, 1-azido-3-(N-tert-butyloxycarbonyl-2,2-dimethyloxazolidin-4-yl)-2-propene was obtained. Next, a cis-dihydroxylation reaction provided the protected D-xylitol and L-arabinitol azides. A simple protection-deprotection sequence, followed by an oxidation and a reductive cyclization, led to protected 2-amino-delta-lactams bearing a tert-butyloxycarbonyl group on the amine functionality. To explore the reactivity of such compounds, activation of the lactam into the corresponding thionolactam was performed. The resulting 2-amino-D-xylothionolactam derivative, a versatile intermediate, allowed access to a first generation of protected 2-amino-D-xylosamidoxime derivatives which are of interest as precursors of N-acetylhexosaminidase and N-acetylglucosaminyltransferase inhibitors. In this series of compounds, epimerization at C-2 was observed. AM(1) calculations performed on these analogs showed that they adopted a B(2,5) conformation and that the axial epimer was favored in the protected series whereas the equatorial epimer was preferred in the unprotected series.  相似文献   
4.
d-Arabinose is a major sugar in the cell wall polysaccharides of Mycobacterium tuberculosis and other mycobacterial species. The reactions involved in the biosynthesis and activation of d-arabinose represent excellent potential sites for drug intervention since d-arabinose is not found in mammalian cells, and the cell wall arabinomannan and/or arabinogalactan appear to be essential for cell survival. Since the pathway involved in conversion of d-glucose to d-arabinose is unknown, we incubated cells of Mycobacterium smegmatis individually with [1-(14)C]glucose, [3,4-(14)C]glucose, and [6-(14)C]glucose and compared the specific activities of the cell wall-bound arabinose. Although the specific activity of the arabinose was about 25% lower with [6-(14)C]glucose than with other labels, there did not appear to be selective loss of either carbon 1 or carbon 6, suggesting that arabinose was not formed by loss of carbon 1 of glucose via the oxidative step of the pentose phosphate pathway, or by loss of carbon 6 in the uronic acid pathway. Similar labeling patterns were observed with ribose isolated from the nucleic acid fraction. Since these results suggested an unusual pathway of pentose formation, labeling studies were also done with [1-(13)C]glucose, [2-(13)C]glucose, and [6-(13)C]glucose and the cell wall arabinose was examined by NMR analysis. This method allows one to determine the relative (13)C content in each carbon of the arabinose. The labeling patterns suggested that the most likely pathway was condensation of carbons 1 and 2 of fructose 6-phosphate produced by the transaldolase reaction with carbons 4, 5, and 6 (i.e., glyceraldehyde 3-phosphate) formed by fructose-1,6 bisphosphate aldolase. Cell-free enzyme extracts of M. smegmatis were incubated with ribose 5-phosphate, xylulose 5-phosphate, and d-arabinose 5-phosphate under a variety of experimental conditions. Although the ribose 5-phosphate and xylulose 5-phosphate were converted to other pentoses and hexoses, no arabinose 5-phosphate (or free arabinose) was detected in any of these reactions. In addition, these enzyme extracts did not convert arabinose 5-phosphate to any other pentose or hexose. In addition, incubation of [(14)C]glucose 6-phosphate and various nucleoside triphosphates (ATP, CTP, GTP, TTP, and UTP) with cytosolic or membrane fractions from the mycobacterial cells did not result in formation of a nucleotide form of arabinose, although other radioactive sugars including rhamnose and galactose were found in the nucleotide fraction. Furthermore, no radioactive arabinose was found in the nucleotide fraction isolated from M. smegmatis cells grown in [(3)H]glucose, nor was arabinose detected in a large-scale extraction of the sugar nucleotide fraction from 300 g of cells. The logical conclusion from these studies is that d-arabinose is probably produced from d-ribose by epimerization of carbon 2 of the ribose moiety of polyprenylphosphate-ribose to form polyprenylphosphate-arabinose, which is then used as the precursor for formation of arabinosyl polymers.  相似文献   
5.
A gene (thaI) corresponding to l-arabinose isomerase from Thermus strain IM6501 was cloned by PCR. It comprised 1488 nucleotides and encoded a polypeptide of 496 residues with a predicted molecular weight of 56019 Da. The deduced amino acid sequence had 96.8% identity with the l-arabinose isomerase of Geobacillus stearothermophilus. Recombinant ThaI with N-terminal hexa-tistidine tags was over-expressed in Escherichia coli and purified by affinity chromatography using Ni-NTA resin. The purified ThaI was thermostable with maximal activity at 60°C at pH 8 for 30 min of reaction. Zn2+ and Ni2+ inactivated the catalytic activity of ThaI, 5 mM Mn2+ enhanced the bioconversion yield by 90%. The bioconversion yield of 54% from d-galactose to d-tagatose was obtained by recombinant ThaI at 60°C over 3 d.  相似文献   
6.
Arabinans are found in the pectic network of many cell walls, where, along with galactan, they are present as side chains of Rhamnogalacturonan I. Whilst arabinans have been reported to be abundant polymers in the cell walls of seeds from a range of plant species, their proposed role as a storage reserve has not been thoroughly investigated. In the cell walls of Arabidopsis seeds, arabinose accounts for approximately 40% of the monosaccharide composition of non- cellulosic polysaccharides of embryos. Arabinose levels decline to -15% during seedling establishment, indicating that cell wall arabinans may be mobilized during germination. Immunolocalization of arabinan in embryos, seeds, and seedlings reveals that arabinans accumulate in developing and mature embryos, but disappear during germination and seedling establishment. Experiments using 14C-arabinose show that it is readily incorporated and metabolized in growing seedlings, indicating an active catabolic pathway for this sugar. We found that depleting arabinans in seeds using a fungal arabinanase causes delayed seedling growth, lending support to the hypothesis that these polymers may help fuel early seedling growth.  相似文献   
7.
Lipopolysaccharide (LPS) biosynthesis represents an underexploited target pathway for novel antimicrobial development to combat the emergence of multidrug‐resistant bacteria. A key player in LPS synthesis is the enzyme D ‐arabinose‐5‐phosphate isomerase (API), which catalyzes the reversible isomerization of D ‐ribulose‐5‐phosphate to D ‐arabinose‐5‐phosphate, a precursor of 3‐deoxy‐D ‐manno‐octulosonate that is an essential residue of the LPS inner core. API is composed of two main domains: an N‐terminal sugar isomerase domain (SIS) and a pair of cystathionine‐β‐synthase domains of unknown function. As the three‐dimensional structure of an enzyme is a prerequisite for the rational development of novel inhibitors, we present here the crystal structure of the SIS domain of a catalytic mutant (K59A) of E. coli D ‐arabinose‐5‐phosphate isomerase at 2.6‐Å resolution. Our structural analyses and comparisons made with other SIS domains highlight several potentially important active site residues. In particular, the crystal structure allowed us to identify a previously unpredicted His residue (H88) located at the mouth of the active site cavity as a possible catalytic residue. On the basis of such structural data, subsequently supported by biochemical and mutational experiments, we confirm the catalytic role of H88, which appears to be a generally conserved residue among two‐domain isomerases.  相似文献   
8.
A recombinant Escherichia coli (pBAB1) containing styrene monooxygenase (SMO) was developed for the conversion of styrene to enantiopure (S)-styrene oxide that is an important chiral building block in organic synthesis. The styAB genes encoding SMO was cloned into a multicopy plasmid under the tightly regulated promoter of bacterial l-arabinose operon which is inducible by l-arabinose. The recombinant showed that expression level of StyA protein and whole-cell SMO activities were varied depending on the concentration of the inducer l-arabinose. The maximum SMO activity was 108 U/g cdw when the cells were induced with 0.2% l-arabinose. SDS-PAGE and Western blot analyses indicated that whole-cell SMO activity was strongly correlated with the expression level of StyA protein. Organic-aqueous two-phase experiment could yield 50 mM enantiopure (S)-styrene oxide in organic phase in 18 h, but the recombinant SMO activity was unstable during the reaction. The expression of styAB under the control of l-arabinose promoter was significantly repressed in the presence of glucose.  相似文献   
9.
In part of the life cycle within their sand fly vector, Leishmania major parasites first attach to the fly's midgut through their main surface adhesin lipophosphoglycan (LPG) and later resynthesize a structurally distinct LPG that results in detachment and eventual transmission. One of these structural modifications requires the addition of alpha1,2-D-arabinopyranose caps to beta1,3-galactose side chains in the phosphoglycan repeat unit domain of LPG. We had previously identified two side chain arabinose genes (SCA1/2) that were involved in the alpha1,2-D-Arap capping. SCA1/2 exhibit canonical glycosyltransferase motifs, and overexpression of either gene leads to elevated microsomal alpha1,2-D-ArapT activity, resulting in arabinopyranosylation of beta1,3-Gal side chains in LPG (hereafter called side chain D-arabinopyranosyltransferase [sc-D-ArapT]). Heterologous expression in a null arabinose background was used to determine whether the SCA1 gene encodes the actual sc-D-ArapT. SCA1 expression constructs introduced into both mammalian COS-7 cells and the baculovirus-sf9 cell system exhibited considerable expression of the protein. However, functional sc-D-ArapT activity was observed only in the latter. In in vitro assays incubated with guanidine 59-diphosphate (GDP)-D-[3H]Arap as the sugar donor and utilizing exogenous LPG as an acceptor, significant sc-D-ArapT activity was observed when microsomes from the baculovirus-sf9 cells were incubated in presence of the LPG acceptor. No activity was observed in the absence of LPG. These results demonstrate that SCA1 encodes a sc-D-ArapT and provide the first example of heterologous expression of a D-ArapT gene.  相似文献   
10.
马克斯克鲁维酵母作为非常规酵母在燃料乙醇发酵中受到人们越来越多的关注。马克斯克鲁维具有天然的发酵戊糖的能力,但不同菌株的发酵能力存在较大差异。本研究比较了3株马克斯克鲁维菌株Kluyveromyces marxianus 9009/1911/1727(K.m 9009/1911/1727)在不同温度下的木糖和阿拉伯糖的发酵性能差异,结果发现不同发酵温度下,3株菌在耗糖速率、糖醇产率均表现出了显著的差异。菌株K.m 9009和K.m 1727在40℃下的发酵性能均优于30℃,这充分体现了马克斯克鲁维酵母的高温发酵优势。针对发酵差异,采用PCR方法获得3个不同菌株的戊糖代谢途径中的5种关键代谢酶(XR、XDH、XK、AR和LAD)的基因序列,并利用Clustalx 2.1进行了序列比对。结果显示3株菌的相关基因与文献中报道的1株克鲁维酵母的相应关键酶氨基酸编码序列相似性达98%以上,并且差异的氨基酸不在酶的关键位点处。在此基础上,通过Real-time实验,对木糖发酵差异最为明显的K.m 1727和K.m 1911的木糖代谢过程4个关键酶(XR、XDH、XK和ADH)的基因表达量进行测定,其结果显示对于耐热菌株K.m 1727,XDH和XK基因表达量低是导致木糖代谢过程中木糖醇积累、乙醇产量低的主要原因。最后,将所测得的马克斯克鲁维酵母的戊糖代谢关键酶序列与其他不同种属相比对,确定了其木糖和阿拉伯糖代谢途径,为进一步利用代谢工程方法提高戊糖发酵性能奠定了基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号