首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   5篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2015年   4篇
  2014年   8篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1987年   2篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
1.
In germinating lupin cotyledons, there was a rapid depletion of raffinose series oligosaccharides, a temporary increase in sucrose and constant low levels of reducing monosaccharides. The major polysaccharide fraction was extracted with hot NH4 oxalate—EDTA solution and had the constitution of intercellular/cell wall polysaccharide. GLC examination of component sugars showed that as cotyledons expanded this fraction was depleted and that there was selective hydrolysis of arabinose and galactose, so that the uronic acid proportion increased. Gel and DEAE-cellulose chromatography showed that this fraction became more heterogeneous. The neutral and acidic fractions were separated and the component sugars, viscosities, gel chromatographic behaviour and sedimentation constants of these determined. The results indicated that in the later phase of plant cell wall expansion in germinating lupin cotyledons the arabinogalactan side chains of the pectic polysaccharide fraction are selectively hydrolysed leaving a primary wall with a high uronic acid content.  相似文献   
2.
Building a robust, stable network must include strategies to minimize perturbations caused by environmental stress, while optimizing cellular fitness. The introduction of oxygen into the Earth's atmosphere brought challenges for the microbes that had evolved enzyme machinery and metabolic network stability in the anoxic world. Unable to generate new enzyme paradigms and metabolic networks de novo, organisms have evolved strategies to neutralize the impact of oxygen that can be added to and integrated into the existing metabolic framework. This issue of Molecular Microbiology includes a paper by Korshunov et al. in which the authors describe an elegant strategy that Escherichia coli has evolved to minimize metabolic stress that results from the acquisition and use of cystine, the oxidized form of cysteine, as a source of cellular sulfur. This study highlights how a strategy involving both cost and benefit can result in a functional, but energy intensive mechanism for this bacterium to thrive in an oxic world.  相似文献   
3.

Background and Aims

Cell wall pectins and arabinogalactan proteins (AGPs) are important for pollen tube growth. The aim of this work was to study the temporal and spatial dynamics of these compounds in olive pollen during germination.

Methods

Immunoblot profiling analyses combined with confocal and transmission electron microscopy immunocytochemical detection techniques were carried out using four anti-pectin (JIM7, JIM5, LM5 and LM6) and two anti-AGP (JIM13 and JIM14) monoclonal antibodies.

Key Results

Pectin and AGP levels increased during olive pollen in vitro germination. (1 → 4)-β-d-Galactans localized in the cytoplasm of the vegetative cell, the pollen wall and the apertural intine. After the pollen tube emerged, galactans localized in the pollen tube wall, particularly at the tip, and formed a collar-like structure around the germinative aperture. (1 → 5)-α-l-Arabinans were mainly present in the pollen tube cell wall, forming characteristic ring-shaped deposits at regular intervals in the sub-apical zone. As expected, the pollen tube wall was rich in highly esterified pectic compounds at the apex, while the cell wall mainly contained de-esterified pectins in the shank. The wall of the generative cell was specifically labelled with arabinans, highly methyl-esterified homogalacturonans and JIM13 epitopes. In addition, the extracellular material that coated the outer exine layer was rich in arabinans, de-esterified pectins and JIM13 epitopes.

Conclusions

Pectins and AGPs are newly synthesized in the pollen tube during pollen germination. The synthesis and secretion of these compounds are temporally and spatially regulated. Galactans might provide mechanical stability to the pollen tube, reinforcing those regions that are particularly sensitive to tension stress (the pollen tube–pollen grain joint site) and mechanical damage (the tip). Arabinans and AGPs might be important in recognition and adhesion phenomena of the pollen tube and the stylar transmitting cells, as well as the egg and sperm cells.  相似文献   
4.
The establishment and maintenance of cell polarity play pivotal roles during plant development. During the past five years, proteins that are required for different aspects of plant cell polarity have been identified. However, the functions of lipids and their interactions with proteins that mediate polarity remained largely unaddressed. Recent genetic studies have discovered cell and tissue polarity mutants that have defects in sterol composition, glycosylphosphatidylinositol-anchored proteins, glycosylphosphatidylinositol biosynthesis and phospholipid signalling. Analyses of the affected gene products have provided a first glance at the roles of lipids in cell polarity signalling, as well as in the trafficking and anchoring of polar proteins.  相似文献   
5.
Arabinogalactan proteins are abundant cell surface proteoglycans in plants and are implicated to act as developmental markers during plant growth. We previously reported that AtGALT31A, AtGALT29A, and AtGLCAT14A-C, which are involved in the biosynthesis of arabinogalactan proteins, localize not only to the Golgi cisternae but also to smaller compartments, which may be a part of the unconventional protein secretory pathway in plants. In Poulsen et al.,1 we have demonstrated increased targeting of AtGALT29A to small compartments when Y144 is substituted with another amino acid, and we implicated a role for Y144 in the subcellular targeting of AtGALT29A. In this paper, we are presenting another aspect of Y144 substitution in AtGALT29A; namely, Y144A construct demonstrated a 2.5-fold increase while Y144E construct demonstrated a 2-fold decrease in the galactosyltransferase activity of AtGALT29A. Therefore, the electrostatic status of Y144, which is regulated by an unknown kinase/phosphatase system, may regulate AtGALT29A enzyme activity. Moreover, we have identified additional proteins, apyrase 3 (APY3; At1g14240) and UDP-glucuronate epimerases 1 and 6 (GAE1, At4g30440; GAE6, At3g23820), from Arabidopsis thaliana that co-localize with AtGALT31A in the small compartments when expressed transiently in Nicotiana benthamiana. These proteins may play roles in nucleotide sugar metabolism in the small compartments together with arabinogalactan glycosyltransferases.  相似文献   
6.
The cortical array of microtubules inside the cell and arabinogalactan proteins on the external surface of the cell are each implicated in plant morphogenesis. To determine whether the cortical array is influenced by arabinogalactan proteins, we first treated Arabidopsis roots with a Yariv reagent that binds arabinogalactan proteins. Cortical microtubules were markedly disorganized by 1 microM beta-D-glucosyl (active) Yariv but not by up to 10 microM beta-D-mannosyl (inactive) Yariv. This was observed for 24-h treatments in wild-type roots, fixed and stained with anti-tubulin antibodies, as well as in living roots expressing a green fluorescent protein (GFP) reporter for microtubules. Using the reporter line, microtubule disorganization was evident within 10 min of treatment with 5 microM active Yariv and extensive by 30 min. Active Yariv (5 microM) disorganized cortical microtubules after gadolinium pre-treatment, suggesting that this effect is independent of calcium influx across the plasma membrane. Similar effects on cortical microtubules, over a similar time scale, were induced by two anti-arabinogalactan-protein antibodies (JIM13 and JIM14) but not by antibodies recognizing pectin or xyloglucan epitopes. Active Yariv, JIM13, and JIM14 caused arabinogalactan proteins to aggregate rapidly, as assessed either in fixed wild-type roots or in the living cells of a line expressing a plasma membrane-anchored arabinogalactan protein from tomato fused to GFP. Finally, electron microscopy of roots prepared by high-pressure freezing showed that treatment with 5 microM active Yariv for 2 h significantly increased the distance between cortical microtubules and the plasma membrane. These findings demonstrate that cell surface arabinogalactan proteins influence the organization of cortical microtubules.  相似文献   
7.
Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio‐synthetical target for anti‐tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin‐9 and exacerbates mycobacterial infection. Administration of AG‐specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb‐infected mice or Mycobacterium marinum‐infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin‐9 with high affinity, and galectin‐9 associates with transforming growth factor β‐activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal‐regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin‐9 or inhibition of MMPs blocks AG‐induced pathological impairments in the lung, and the AG‐galectin‐9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin‐9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.  相似文献   
8.
Two polysaccharides, a pectin (Vk100A2b) and a pectic arabinogalactan (Vk100A2a) with mean Mw 2 x 10(4) and 1.15 x 10(6)Da, respectively, were isolated from the dried powdered roots of Vernonia kotschyana Sch. Bip. ex Walp. by hot water extraction followed by fractionation on DEAE-Sepharose fast flow and Sephacryl S-400 HR. The pectin showed low-complement fixation activity and no influence on proliferation of B or T cells, while the pectic arabinogalactan showed a potent, dose-dependent complement fixation activity and a T cell independent induction of B-cell proliferation. Both polysaccharides induced chemotaxis of human macrophages, T cells and NK cells. exo-alpha-L-arabinofuranosidase and exo-beta-D-galactosidase digestion followed by component sugar and methylation analysis indicated that Vk100A2a consisted of a highly branched rhamnogalacturonan core with approximately 50% of the rhamnose 1,2,4-substituted, side chains rich in terminal-, 1,5-linked and 1,3,5-branched arabinose and terminal-, 1,4-, 1,6-linked and 1,3,6-branched galactose. The enzyme resistant part of Vk100A2a still showed strong complement fixating activity, suggesting that this activity may at least in part be expressed by carbohydrate structures present in the enzyme resistant, inner portion of the polymer.  相似文献   
9.
Arabinogalactan proteins (AGPs) are highly glycosylated hydroxyproline-containing variously located proteoglycans dynamically regulated in the course of plant ontogenesis. Special functions of AGPs are still unclear, but their involvement in vegetative growth and reproduction of plants is well established. This review considers data on the structure, biosynthesis, and metabolism of AGPs. Special attention is given to involvement of AGPs in growth and morphogenesis, and possible mechanisms of their regulatory action are considered. AGPs are also compared with animal proteoglycans.  相似文献   
10.
The polypeptide composition and functional activity of cell-wall lectins from roots of winter wheat (Triticum aestivum L., cv. Mironovskaya 808) seedlings during cold hardening were studied. Several phases of lectin activity changes were observed, which indicates their involvement in the development of general adaptation syndrome of the cell. After 0.5-h low-temperature treatment, marked alterations occurred in the profile of protein elution: lectins with mol wts of 78 and 42.5 kD disappeared and new ones with mol wts of 72, 69, 37, and 34.5 kD appeared. It was established that 17.5-and 69-kD lectins and most lectins eluted with glucose were arabinogalactan proteins (AGP), which permitted a supposition that these lectins were involved in the interaction between the cell wall and cytoskeleton. After 7-day-long hardening, total protein content reduced and lectins with mol wts of 69 and 37 kD disappeared, which corresponded to reduced lectin activity by the end of hardening. A transient appearance of 37-and 69-kD lectins, which are AGP, might indicate their involvement in the triggering the development of plant-cell defense responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号