首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  2024年   1篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2014年   4篇
  2013年   2篇
  2011年   2篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Aptamers (Apts) are synthetic nucleic acid ligands that can be engineered to target various molecules, including amino acids, proteins, and pharmaceuticals. Through a series of adsorption, recovery, and amplification steps, Apts are extracted from combinatorial libraries of synthesized nucleic acids. Using aptasensors in bioanalysis and biomedicine can be improved by combining them with nanomaterials. Moreover, Apt-associated nanomaterials, including liposomes, polymeric, dendrimers, carbon nanomaterials, silica, nanorods, magnetic NPs, and quantum dots (QDs), have been widely used as promising nanotools in biomedicine. Following surface modifications and conjugation with appropriate functional groups, these nanomaterials can be successfully used in aptasensing. Advanced biological assays can use Apts immobilized on QD surfaces through physical interaction and chemical bonding. Accordingly, modern QD aptasensing platforms rely on interactions between QDs, Apts, and targets to detect them. QD-Apt conjugates can be used to directly detect prostate, ovarian, colorectal, and lung cancers or simultaneously detect biomarkers associated with these malignancies. Tenascin-C, mucin 1, prostate-specific antigen, prostate-specific membrane antigen, nucleolin, growth factors, and exosomes are among the cancer biomarkers that can be sensitively detected using such bioconjugates. Furthermore, Apt-conjugated QDs have shown great potential for controlling bacterial infections such as Bacillus thuringiensis, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Campylobacter jejuni, Staphylococcus aureus, and Salmonella typhimurium. This comprehensive review discusses recent advancements in the design of QD-Apt bioconjugates and their applications in cancer and bacterial theranostics.  相似文献   
2.
Abstract

The aptamers with the ability to form a G-quadruplex structure can be stable in the presence of some ions. Hence, study of the interactions between such aptamers and ions can be beneficial to determine the highest selective aptamer toward an ion. In this article, molecular dynamics (MD) simulations and quantum mechanics (QM) calculations have been applied to investigate the selectivity of the T30695 aptamer toward Pb2+ in comparison with some ions. The Free Energy Landscape (FEL) analysis indicates that Pb2+ has remained inside the aptamer during the MD simulation, while the other ions have left it. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding energies prove that the conformational stability of the aptamer is the highest in the presence of Pb2+. According to the compaction parameters, the greatest compressed ion-aptamer complex, and hence, the highest ion-aptamer interaction have been induced in the presence of Pb2+. The contact maps clarify the closer contacts between the nucleotides of the aptamer in the presence of Pb2+. The density functional theory (DFT) results show that Pb2+ forms the most stable complex with the aptamer, which is consistent with the MD results. The QM calculations reveal that the N-H bonds and the O…H distances are the longest and the shortest, respectively, in the presence of Pb2+. The obtained results verify that the strongest hydrogen bonds (HBs), and hence, the most compressed aptamer structure are induced by Pb2+. Besides, atoms in molecules (AIM) and natural bond orbital (NBO) analyses confirm the results.

Communicated by Ramaswamy H. Sarma  相似文献   
3.
Here, we describe the fabrication of an electrochemical immunoglobulin E (IgE) aptasensor using enzyme-linked aptamer in the sandwich assay method and thionine as redox probe. In this protocol, 5′-amine-terminated IgE aptamer and thionine were covalently attached on glassy carbon electrode modified with carbon nanotubes/ionic liquid/chitosan nanocomposite. Furthermore, another IgE aptamer was modified with biotin and enzyme horseradish peroxidase (HRP), which attached to the aptamer via biotin–streptavidin interaction. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry were performed at each stage of the chemical modification process to confirm the resulting surface changes. The presence of IgE induces the formation of a double aptamer sandwich structure on the electrode, and the electrocatalytic reduction current of thionine in the presence of hydrogen peroxide was measured as the sensor response. Under optimized conditions and using differential pulse voltammetry as the measuring technique, the proposed aptasensor showed a low detection limit (6 pM) and high sensitivity (1.88 μA nM−1). This aptasensor also exhibited good stability and high selectivity for IgE detection without an interfering effect of some other proteins such as bovine serum albumin (BSA) and lysozyme. The application of the aptasensor for IgE detection in human serum sample was also investigated. The proposed protocol is quite promising as an alternative sandwich approach for various protein assays.  相似文献   
4.
In the study, we have developed an expedient and efficient method for the detection of theophylline based on the amplification of the signal intensity of fluorescence based on oxidized single-walled carbon nanohorns (oxSWCNHs)/cryonase. When theophylline was not present in the system, oxSWCNHs can adequately adsorb nucleic acid probes labeled by carboxyfluorescein (FAM). In the presence of theophylline, the nucleic acid probe forms the tertiary probe–theophylline complex, which detaches from the surface of the oxSWCNHs. Then, upon reaction with cryonase, the complex can release the FAM and theophylline into the next cycle. The fluorescence signal of the system exhibits a 1:N magnification, enabling quantitative detection of theophylline. The linear range was 30–150 ng/mL, and the limit of detection (LOD) was 6.04 ng/mL. At the same time, it can also be used to detect theophylline in mouse serum.  相似文献   
5.
The sensitivity and detection time of an aptamer based biosensor for detecting botulinum neurotoxin (BoNT) depend upon the formation of proper tertiary architecture of aptamer, which closely correlates with the combinatorial effects of multiple types of ions and their concentrations presented in the buffer. Finding the optimal conditions for four different ions at 12 different concentrations, 20,736 possible combinations, by brute force is an extremely laborious and time-consuming task. Here, we introduce a feedback system control (FSC) scheme that can rapidly identify the best combination of components to form the optimal aptamer structure binding to a target molecule. In this study, rapid identification of optimized ionic combinations for electrochemical aptasensor of BoNT type A (BoNT/A) detection has been achieved. Only about 10 iterations with about 50 tests in each iteration are needed to identify the optimal ionic concentration out of the 20,736 possibilities. The most exciting finding was that a very short detection time and high sensitivity could be achieved with the optimized combinational ion buffer. Only a 5-min detection time, compared with hours or even days, was needed for aptamer-based BoNT/A detection with a limit of detection of 40 pg/ml. The methodologies described here can be applied to other multi-parameter chemical systems, which should significantly improve the rate of parameter optimization.  相似文献   
6.
In the present work, aptamers against aflatoxin M1 and aflatoxin B1 were generated and tested for creating proof of principle of recognition of aflatoxin M1 by generated aptamers. The aptamers were selected through the process referred as systematic evolution of ligands by exponential enrichment. A total of 41 different aptamer (36 aptamers for aflatoxin M1 and 5 for aflatoxin B1) sequences were obtained. The determination of dissociation constant (Kd) values revealed that aptamers generated against aflatoxin M1 exhibited Kd values in the range of 35–1515 nM. Selected aptamers were grouped on the basis of the presence of common motifs or G‐quadruplex. We find it interesting that one aptamer with no conserved motif or G‐quadruplex had lowest Kd value (Kd = 35 nM). This structural motif is very distinct from motifs present in other aptamers. The Kd values of selected aptamers for aflatoxin B1 were in the range of 96–221 nM. One aptamer from each group was further tested for its ability to be used in aptasensor. The aptamer recognized aflatoxin M1 as indicated by color change (red to purple or blue) of aptamer‐coated gold nanoparticles in the presence of 250–500 nM aflatoxin M1. The aptamers can be used in developing methods for detection/estimation/separation of aflatoxin or antidote for aflatoxin toxicity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
Here, a biosensor based on a quadruplex-forming aptamer for the determination of potassium ion (K+) is presented. The aptamer was used as a molecular recognition element; it was adjacent to two arm fragments and a dual-labeled oligonucleotide serving as a signal transduction probe (STP) that is complementary of the arm fragment sequence. In the presence of K+, the aptamer was displaced from the STP, which was accompanied by decreased signal. The quenching percentage of fluorescence intensity was proportional to the concentration of K+ in the range of 0.05 to 1.4 mM. A detection limit of 0.014 mM was achieved. Furthermore, other metal ions, such as Na+, Li+, NH4+, Mg2+, and Ca2+, caused no notable interference on the detection of K+.  相似文献   
8.
A simple microRNA (miRNA) aptasensor has been developed combining the conformational switch of a streptavidin aptamer and isothermal strand displacement amplification. In the presence of its target miRNA, the allosteric molecular beacon (aMB) probe immobilized on the plate can be ‘switched on' and release the streptavidin aptamer. At the same time, Klenow fragment (3′→5′ exo‐) is utilized to initiate DNA‐strand displacement, which starts the target recycling process. Based on the aptamer' high binding affinity and subsequent catalytic chemiluminescence (CL) detection, this CL strategy is highly specific in distinguishing mature miRNAs in same family. It exhibits a dynamic range of four orders of magnitude with a detection limit of 50 fM, and shows great potential for miRNA‐related clinical practices and biochemical research.  相似文献   
9.
Aflatoxin B1 (AFB1) is one of the most commonly found mycotoxins in food commodities, particularly cereals, oilseeds, spices and tree nuts. In the past decade, aptamers have come into limelight and emerged as a new biosensing element replacing antibodies in various detection formats. Herein we report a faster, more sensitive, high throughput method for the detection of AFB1 using AFB1‐specific aptamers. The assay format was based on a competitive reaction of the fluorescent tagged aptamer specific to AFB1 with the aflatoxin conjugate. Under optimal conditions, a linear range of detection (50 ng to 50 pg) was achieved with a limit of detection (LOD) of 10 pg/mL in the buffer system. Results of inter‐ and intra‐assay revealed that the assay was repeatable with standard deviation in acceptable range. The assay was also validated in food samples such as dried red chilies, groundnut and whole pepper with recovery in the range of 92 to 102% at 10 ng/mL and 100 pg/mL levels. The aptasensor assay was also compared with standard analytical method of HPLC and was found to be more sensitive. This detection technique has the potential to be developed into a biosensor platform for AFB1 detection.  相似文献   
10.
In this work, we have successfully demonstrated a facile strategy to incorporate high-quality hollow CoPt bimetal alloy nanoparticles (HCoPt) onto reduced graphene oxide sheet (HCoPt-RGs). An advanced sandwich-type electrochemical aptasensor for thrombin was proposed by using the HCoPt-RGs conjugates as secondary label. The formed conjugates provided large surface area for loading plentiful redox probe thionine (Thi), horseradish peroxidase (HRP) and secondary aptamer (Apt II) with good stability and friendly biocompatibility, indicating their superior properties in electroactive mediator enrichment and biomolecule immobilization. Furthermore, activated by glutaraldehyde (GA), the chitosan-hollow CoPt alloy nanoparticle (CS-HCoPt) film can greatly facilitate the capture of primary aptamer (Apt I) and dramatically reduce the nonspecific binding. Excellent sensitivity was obtained by detecting the conspicuously enhanced electrochemical signal of Thi, which was amplified by HCoPt alloy nanoparticles and HRP toward the catalytic reduction of H2O2. The aptasensor displayed excellent performance for thrombin with a wide linearity in the range from 1.0 × 10−12 to 5.0 × 10−8 M and a relatively low detection limit of 3.4 × 10−13 M. Moreover, the resulted aptasensor also exhibited good specificity, acceptable reproducibility and stability, indicating that the present strategy could pave a promising way for the wide application of graphene in clinical research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号