首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
The mitochondria-mediated caspase activation pathway is a major apoptotic pathway characterized by mitochondrial outer membrane permeabilization (MOMP) and subsequent release of cytochrome c into the cytoplasm to activate caspases. MOMP is regulated by the Bcl-2 family of proteins. This pathway plays important roles not only in normal development, maintenance of tissue homeostasis and the regulation of immune system, but also in human diseases such as immune disorders, neurodegeneration and cancer. In the past decades the molecular basis of this pathway and the regulatory mechanism have been comprehensively studied, yet a great deal of new evidence indicates that cytochrome c release from mitochondria does not always lead to irreversible cell death, and that caspase activation can also have non-death functions. Thus, many unsolved questions and new challenges are still remaining. Furthermore, the dysfunction of this pathway involved in cancer development is obvious, and targeting the pathway as a therapeutic strategy has been extensively explored, but the efficacy of the targeted therapies is still under development. In this review we will discuss the mitochondria-mediated apoptosis pathway and its physiological roles and therapeutic implications.  相似文献   
2.
The Drosophila Apaf-1 related killer (Dark) forms an apoptosome that activates Dronc, an apical procaspase in the intrinsic cell death pathway. To study this process, we assembled a large Dark complex in the presence of dATP. Remarkably, we found that cytochrome c was not required for assembly and when added, cytochrome c did not bind to the Dark complex. We then determined a 3D structure of the Dark complex at 18.8A resolution using electron cryo-microscopy and single particle methods. In the structure, eight Dark subunits form a wheel-like particle and two of these rings associate face-to-face. In contrast, Apaf-1 forms a single ring that is comprised of seven subunits and each Apaf-1 binds a molecule of cytochrome c. We then used relevant crystal structures to model the Dark complex. This analysis shows that a single Dark ring and the Apaf-1 apoptosome share many key features. When taken together, the data suggest that a single ring in the Dark complex may represent the Drosophila apoptosome. Thus, our analysis provides a domain model of this complex and gives insights into its function.  相似文献   
3.
Pyroptosis has been described in mammalian systems to be a form of programmed cell death that is important in immune function through the subsequent release of cytokines and immune effectors upon cell bursting. This form of cell death has been increasingly well-characterized in mammals and can occur using alternative routes however, across phyla, there has been little evidence for the existence of pyroptosis. Here we provide evidence for an ancient origin of pyroptosis in an in vivo immune scenario in Drosophila melanogaster. Crystal cells, a type of insect blood cell, were recruited to wounds and ruptured subsequently releasing their cytosolic content in a caspase-dependent manner. This inflammatory-based programmed cell death mechanism fits the features of pyroptosis, never before described in an in vivo immune scenario in insects and relies on ancient apoptotic machinery to induce proto-pyroptosis. Further, we unveil key players upstream in the activation of cell death in these cells including the apoptosome which may play an alternative role akin to the inflammasome in proto-pyroptosis. Thus, Drosophila may be a suitable model for studying the functional significance of pyroptosis in the innate immune system.  相似文献   
4.
Glycosphingolipids (GSLs) comprise a class of lipids with important structural and signaling functions. Synthesized from ceramide in the Golgi, they are subsequently distributed to different compartments, most predominantly in the plasma membrane where they integrate signaling platforms. A recently characterized trafficking of ganglioside GD3 (GD3), a GSLs with two sialic-acid residues, to mitochondria has revealed a novel function of this lipid as a death effector. In addition to the interaction of GD3 with mitochondria recruiting these organelles to apoptotic pathways, GD3 disables survival paths dependent on NF-B, thus favoring the balance towards cell death. The present review gathers the evidence documenting this emerging function of GSLs in cell death and their involvement in pathological states. Published in 2004..  相似文献   
5.
Apoptosis is a complex process that plays a central role in physiological and pathological cell death. This fast evolving research area has experienced incredible development in the past few years. Progress in the knowledge of the structure of many of the main molecular actors of the apoptotic signal transduction pathways has driven the design of synthetic peptides that in some cases can function as simplified versions of their parent proteins. These molecules are contributing to a better understanding of the activity and regulation of apoptotic proteins and also are setting the basis for the discovery of effective drugs to combat important diseases related to apoptosis. Most applications of peptides in apoptosis research are so far related to caspases, caspase regulatory proteins, such as LAPs and Smac, and proteins of the Bcl-2 family. Additionally, important perspectives are open to other systems, such as the macromolecular assemblies that are responsible for the activation of initiator caspases.  相似文献   
6.
During stress‐induced apoptosis, the initiator caspase‐9 is activated by the Apaf‐1 apoptosome and must remain bound to retain significant catalytic activity. Nevertheless, in apoptotic cells the vast majority of processed caspase‐9 is paradoxically observed outside the complex. We show herein that apoptosome‐mediated cleavage of procaspase‐9 occurs exclusively through a CARD‐displacement mechanism, so that unlike the effector procaspase‐3, procaspase‐9 cannot be processed by the apoptosome as a typical substrate. Indeed, procaspase‐9 possessed higher affinity for the apoptosome and could displace the processed caspase‐9 from the complex, thereby facilitating a continuous cycle of procaspase‐9 recruitment/activation, processing, and release from the complex. Owing to its rapid autocatalytic cleavage, however, procaspase‐9 per se contributed little to the activation of procaspase‐3. Thus, the Apaf‐1 apoptosome functions as a proteolytic‐based ‘molecular timer’, wherein the intracellular concentration of procaspase‐9 sets the overall duration of the timer, procaspase‐9 autoprocessing activates the timer, and the rate at which the processed caspase‐9 dissociates from the complex (and thus loses its capacity to activate procaspase‐3) dictates how fast the timer ‘ticks’ over.  相似文献   
7.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity is one of the experimental models most commonly used to study the pathogenesis of Parkinson's disease (PD). Although the biochemical mechanisms underlying the cell death induced by MPTP remain to be clarified, it has been found that the mitochondrial apoptotic signaling pathway plays an important role in the neurotoxicity of MPTP. Nucling is a novel type of apoptosis-associated molecule, essential for cytochrome c, apoptosis protease activating factor 1 (Apaf-1), pro-caspase-9 apoptosome induction and caspase-9 activation following pro-apoptotic stress. Here we found that Nucling-deficient mice treated with MPTP did not exhibit locomotor dysfunction in an open-field test. The substantia nigra dopaminergic neurons of Nucling-deficient mice were resistant to the damaging effects of the neurotoxin MPTP. Up-regulated expression of apoptosome was attenuated in Nucling-deficient mice treated with MPTP. These results indicate an important role for Nucling in MPTP-induced neuronal degeneration and suggest that the suppression of Nucling would be of therapeutic benefit for the treatment of neurodegeneration in PD.  相似文献   
8.
The protein apoptotic protease activating factor 1 (Apaf1) is the central component of the apoptosome, a multiprotein complex that activates procaspase-9 after cytochrome c release from the mitochondria in the intrinsic pathway of apoptosis. We have developed a vital method that allows fluorescence-activated cell sorting of cells at different stages of the apoptotic pathway and demonstrated that upon pharmacological inhibition of Apaf1, cells recover from doxorubicin- or hypoxia-induced early apoptosis to normal healthy cell. Inhibiting Apaf1 not only prevents procaspase-9 activation but delays massive mitochondrial damage allowing cell recovery.  相似文献   
9.
The release of cytochrome c from mitochondria is necessary for the formation of the Apaf-1 apoptosome and subsequent activation of caspase-9 in mammalian cells. However, the role of cytochrome c in caspase activation in Drosophila cells is not well understood. We demonstrate here that cytochrome c remains associated with mitochondria during apoptosis of Drosophila cells and that the initiator caspase DRONC and effector caspase DRICE are activated after various death stimuli without any significant release of cytochrome c in the cytosol. Ectopic expression of the proapoptotic Bcl-2 protein, DEBCL, also fails to show any cytochrome c release from mitochondria. A significant proportion of cellular DRONC and DRICE appears to localize near mitochondria, suggesting that an apoptosome may form in the vicinity of mitochondria in the absence of cytochrome c release. In vitro, DRONC was recruited to a >700-kD complex, similar to the mammalian apoptosome in cell extracts supplemented with cytochrome c and dATP. These results suggest that caspase activation in insects follows a more primitive mechanism that may be the precursor to the caspase activation pathways in mammals.  相似文献   
10.
Stress-induced apoptosis: Toward a symmetry with receptor-mediated cell death   总被引:10,自引:0,他引:10  
Apoptosis is a form of programmed cell death executed by caspases activated along signalling pathways initiated by ligation of cell-surface death receptors ( extrinsic pathway ) or by perturbation of the mithocondrial membrane promoted by physical or chemical stress agents ( intrinsic pathway ). In metazoans, this evolutionary conserved, genetically controlled process has a role in a variety of physiological settings, as development, homeostasis of tissues and maintenance of the organism integrity. When deranged by impaired regulation or inappropriate activation apoptosis contributes to the pathogenesis of diseases as autoimmunity, cancer, restenosis, ischaemia, heart failure and neurodegenerative disorders. In this review we will present a survey of the stress-induced intrinsic, mithochondrial, pathway and, based on recent experimental data, we will propose a view compatible with an emergent conceptual symmetry between the two apoptogenic extrinsic and intrinsic pathways. Elements of symmetry present in both the apoptogenic signalling pathways include: early activation of initiator caspases (feed-forwarded by a direct or post-mitocondrial effector caspase-mediated amplification loop in some cell types) and mitochondrial membrane permeabilization with required release of antagonists of active caspase inhibitors (IAPs) in high-level IAPs-expressing cells and apoptosome-mediated amplification of the caspase cascade more or less needed in different cell types.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号