首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1297篇
  免费   75篇
  国内免费   13篇
  1385篇
  2023年   14篇
  2022年   15篇
  2021年   27篇
  2020年   26篇
  2019年   22篇
  2018年   45篇
  2017年   27篇
  2016年   22篇
  2015年   34篇
  2014年   44篇
  2013年   109篇
  2012年   52篇
  2011年   60篇
  2010年   47篇
  2009年   53篇
  2008年   54篇
  2007年   67篇
  2006年   54篇
  2005年   42篇
  2004年   47篇
  2003年   66篇
  2002年   49篇
  2001年   45篇
  2000年   44篇
  1999年   21篇
  1998年   20篇
  1997年   23篇
  1996年   18篇
  1995年   22篇
  1994年   17篇
  1993年   20篇
  1992年   13篇
  1991年   17篇
  1990年   17篇
  1989年   15篇
  1988年   13篇
  1987年   8篇
  1986年   7篇
  1985年   17篇
  1984年   16篇
  1983年   7篇
  1982年   7篇
  1981年   8篇
  1980年   9篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1973年   4篇
排序方式: 共有1385条查询结果,搜索用时 0 毫秒
1.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
2.
A large number of trafficking steps occur between the last compartment of the Golgi apparatus (TGN) and the vacuole of the yeast Saccharomyces cerevisiae. To date, two intracellular routes from the TGN to the vacuole have been identified. Carboxypeptidase Y (CPY) travels through a prevacuolar/endosomal compartment (PVC), and subsequently on to the vacuole, while alkaline phosphatase (ALP) bypasses this compartment to reach the same organelle. Proteins resident to the TGN achieve their localization despite a continuous flux of traffic by continually being retrieved from the distal PVC by virtue of an aromatic amino acid–containing sorting motif. In this study we report that a hybrid protein based on ALP and containing this retrieval motif reaches the PVC not by following the CPY sorting pathway, but instead by signal-dependent retrograde transport from the vacuole, an organelle previously thought of as a terminal compartment. In addition, we show that a mutation in VAC7, a gene previously identified as being required for vacuolar inheritance, blocks this trafficking step. Finally we show that Vti1p, a v-SNARE required for the delivery of both CPY and ALP to the vacuole, uses retrograde transport out of the vacuole as part of its normal cellular itinerary.  相似文献   
3.
4.
5.
6.
Stomach cells of female Asplanchna sieboldi are specialized for absorption and intracellular digestion of nutrients. Evidence is presented to show that electron-opaque colloidal substances, present in the medium and within digestive vacuoles of the prey (Paramecium), are taken up by the stomach cells at the apical cell membrane and sequestered within food vacuoles which contain hydrolases working in both the acid and alkaline pH range. The stomach cells are also implicated in the absorption of molecules below the resolving power of the electron microscope. In rotifers possessing a complete digestive tract, this task is presumed to be handled by the intestine.  相似文献   
7.
Epithelial Na channels are apparently pore-forming membrane proteins which conduct Na much better than any other biologically abundant ion. The conductance to Na can be 100 to 1000 times higher than that to K. The only other ions that can readily get through this channel are protons and Li. Small organic cations cannot pass through the channel, and water may also be impermeant. The selectivity properties of epithelial Na channels appear to be determined by at least three factors: A high field-strength anionic site, most likely a carboxyl residue of glutamic or aspartic acid residues on the channel protein, probably accounts for the high conductance through these channels of Na and Li and to the low conductance of K, Rb and Cs. A restriction in the size of the pore at its narrowest point probably accounts for the low conductance of organic cations as well as the possible exclusion of water molecules. The outer mouth of the channel appears to be negatively charged and may control access to the region of highest selectivity and may serve as a preliminary selectivity filter, attracting cations over anions. These conclusions are illustrated by the cartoon of the channel in Fig. 3. This picture is obviously both fanciful and simplified, but its general points will hopefully be testable. It leaves open a number of important questions, including: does amiloride block the channel by binding within the outer mouth? what does the inner mouth of the channel look like, and does this part of the channel contribute to selectivity? and what, if any, are the interactions between the features of the channel that impart selectivity and those that control the regulation of the channel by hormonal and other factors?  相似文献   
8.
In the parasiticScrophulariaceae andOrobanchaceae, two types of contact organs exist: secondary and primary haustoria. Secondary haustoria are lateral organs, developing in large numbers and only when the seedling is fully established. In contrast, a primary haustorium represents the first developmental stage of the seedling itself. In the root system of the parasiticLesquereuxia syriaca (=Siphonostegia syriaca) there are only secondary haustoria, but a few of them apparently develop in a terminal position. This is achieved by transferring the haustorial initiation region closer to the root apex. One can interpret this as a transformation of the apical meristem into a meristematic haustorial tissue. On the condition that an extreme shortening (abbrevation) of the primary root could happen, we discuss the transformation of the terminal secondary into a primary haustorium.  相似文献   
9.
(1) The ability to produce cephalodia is usually a genus-specific character in lichens. (2)Lecidea shushanii Thoms., is a member of the genusTephromela, closely related toT. aglaea. It is not clear, whether or not the cephalodia of this taxon are true cephalodia or colonies of epiphytic cyanobacteria and whether or notLecidea shushanii is an independent species. (3)Lecidea dovrensis Nyl., is, in contrast to the traditional concept, not conspecific withLecidea alpestris Sommerf., but an earlier name forLecidea pallida Th. Fr. (4)Lecidea dovrensis is described in some detail. Chemically the species is characterized by the presence of isousnic acid (previously unknown in lecideoid lichens). It is restricted to areas north of the 60th parallel with an oceanic climate. (5) In connection with the attempt to clarify the taxonomic relationships ofLecidea dovrensis, figures of ascus apical structures of the following species are given (marked by an asterisk are genera where we found discrepancies with published data):Austrolecia antarctica, Catillaria chalybeia, Lecidea alpestris, L. caesioatra, L. limosa, Lecidoma demissum, Koerberiella wimmeriana, Micarea assimilata, M. crassipes, M. melaenida, M. prasina, Pilophorus robustus, Placodiella olivacea, Placolecis opaca, Porpidia trullisata, Protoblastenia rupestris, Psilolechia lucida, Psorula rufonigra, Squamarina gypsacea, Xanthopsorella texana. (6) Among crustaceous lichens we find no groups related toLecidea dovrensis. We supportTimal's concept of including this species in the genusPilophorus. Pilophorus, as well asLecidea dovrensis is characterized by the same ascus type, by a similar structure of thallus, cephalodia, paraphyses, and ascocarp (although there is no pseudopodetium developed inLecidea dovrensis), and the presence of isousnic acid. In addition, both taxa are restricted to cool oceanic climates and non-calciferous substrates. The following combination is proposed:Pilophorus dovrensis (Nyl.)Timdal, Hertel & Rambold, comb. nova. (7) The species of theLecidea alpestris-group form an independent genus, probably near toAustrolecia Hertel.
Frau Prof. Dr.Elisabeth Tschermak-Woess zu ihrem 70. Geburtstag gewidmet.  相似文献   
10.
Summary The patch-clamp technique in whole-cell configuration was used to study the electrical properties of the tonoplast in isolated vacuoles fromAcer pseudoplatanus cultured cells. In symmetrical KCl or K2 malate solutions, voltage- and time-dependent inward currents were elicited by hyperpolarizing the tonoplast (inside negative), while in the positive range of potential the conductance was very small. The specific conductance of the tonoplast at –100 mV, in 100mm symmetrical KCl was about 160 S/cm2. The reversal potentials (E rev) of the current, measured in symmetrical or asymmetrical ion concentrations (cation, anion or both) were very close to the values of the K+ equilibrium potential. Experiments performed in symmetrical or asymmetrical NaCl indicate that Na+ too can flow through the channels. NeitherE rev nor amplitude and kinetics of the current changed by replacing NaCl with KCl in the external solution. These results indicate the presence of hyperpolarization-activated channels in tonoplasts, which are permeable to K+ as well as to Na+. Anions such as Cl or malate seem to contribute little to the channel current.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号