首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   13篇
  国内免费   31篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   5篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   14篇
  2012年   17篇
  2011年   7篇
  2010年   11篇
  2009年   12篇
  2008年   8篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   8篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   5篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   4篇
  1982年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
1.
本文研究了中国广东汉族健康人群apoAI-CⅢ-AIV基因簇DNA限制性内切酶PstI、SstI和EcoRI片段长度多态性。其中等位基因P_1,P_2,S_1,S_2,R_1和R_2的频率分别为0.98,0.02,0.96,0.04,0.90和0.10。经卡方检验符合Hardy-Weinbery氏遗传平衡,与其他种族比较,本文结果显示中国广东汉族人P_2等位基因频率低于日本人、亚洲印第安人和高加索人,S_2等位基因频率低于日本人、菲律宾人、沙特阿拉伯人和亚洲印第安人,而与高加索人相近,R_2等位基因频率稍高于高加索人。不同种族间apoAI-CⅢ-AIV基因簇DNA多态频率无疑存在差异,这种差异可能是由于遗传漂变和自然选择单独或联合作用所致。对P_1、P_2,S_1、S_2和R_1、R_2构成的单倍型和连锁平衡程度进行了分析,结果显示这些单倍型处于连锁不平衡状态。  相似文献   
2.
以小鼠大脑碎片与[γ-~(32)P]ATP一起保温,观察到溴氰菊酯对蛋白1—3磷酸化的刺激作用和对4、5磷酸化的抑制作用,表明溴氰菊酯对大脑蛋白质磷酸化产生了影响。从鼠脑分离了C、D、S三个组分,分别进行的蛋白质磷酸化试验结果表明,C、D组分可能是重要的磷酸化部位。 蛋白1、2、3的磷酸化明显地受到溴氰菊酯的刺激,这三个蛋白质可能是“蛋白Ⅲb”的几种形式。溴氰菊酯对“蛋白Ⅲb”磷酸化的刺激,可能会影响神经末梢的神经激素释放,从而影响到与其相关的某些神经功能。  相似文献   
3.
Serpin polymerization is the underlying cause of several diseases, including thromboembolism, emphysema, liver cirrhosis, and angioedema. Understanding the structure of the polymers and the mechanism of polymerization is necessary to support rational design of therapeutic agents. Here we show that polymerization of antithrombin is sensitive to the addition of synthetic peptides that interact with the structure. A 12-m34 peptide (homologous to P14-P3 of antithrombin reactive loop), representing the entire length of s4A, prevented polymerization totally. A 6-mer peptide (homologous to P14-P9 of antithrombin) not only allowed polymerization to occur, but induced it. This effect could be blocked by the addition of a 5-mer peptide with s1C sequence of antithrombin or by an unrelated peptide representing residues 26-31 of cholecystokinin. The s1C or cholecystokinin peptide alone was unable to form a complex with native antithrombin. Moreover, an active antitrypsin double mutant, Pro 361-->Cys, Ser 283-->Cys, was engineered for the purpose of forming a disulfide bond between s1C and s2C to prevent movement of s1C. This mutant was resistant to polymerization if the disulfide bridge was intact, but, under reducing conditions, it regained the potential to polymerize. We have also modeled long-chain serpin polymers with acceptable stereochemistry using two previously proposed loop-A-sheet and loop-C-sheet polymerization mechanisms and have shown both to be sterically feasible, as are "mixed" linear polymers. We therefore conclude that the release of strand 1C must be an element of the mechanism of serpin polymerization.  相似文献   
4.
稀土元素也称镧系元素,因其独特的发光性质和配位性质,其发光复合物被广泛研究于生物技术领域。其中稀土铽(Ⅲ)离子复合物因具有优异的光谱特性,关于其研究呈现出快速的发展趋势。主要从其发光特性的角度出发,探讨了其发光机理,并对铽(Ⅲ)离子与不同有机化合物结合形成的发光铽配合物以及铽(Ⅲ)离子及其配合物与不同纳米材料形成的复合物进行了分类综述。此外,还详细地阐述了铽离子及其复合物在荧光探针、生物传感器、药物递送、细胞成像、癌症治疗等相关领域的应用。最后,对其今后发展趋势和潜在的研究价值进行了展望。  相似文献   
5.
Staphylokinase (SAK) is a promising thrombolytic agent for the treatment of patients suffering from blood-clotting disorders. To increase the potency of SAK and to minimize vessel reocclusion, a new construct bearing SAK motif fused to tsetse thrombin inhibitor (TTI) via a 20-amino acid linker with 2 RGD (2 × arginine-glycine-aspartic acid inhibiting platelet aggregation via attachment to integrin receptors of platelet) was codon optimized and expressed comparatively in Pichia pastoris GS115 as a Mut+ strain and KM71H as a Muts strain. Fusion protein was optimized in terms of best expression condition and fibrinolytic activity and compared with the rSAK. Expression level of the designed construct reached up to 175 mg/L of the culture medium after 72-hr stimulation with 2.5% methanol and remained steady for 3–4 days. The highest expression was obtained at the range of 2–3% methanol. The SAK-2RGD-TT (relative activity >82%) was more active at 25–37 °C than rSAK (relative activity of 93%). Further, it showed relative activity >80% at pH ranges of 7–9. Western blot analysis showed two bands of nearly 27 and 24 kDa at ratio of 5 to 3, respectively. The specific fibrinolytic activity of the SAK-2RGD-TTI was measured as 8,269 U/mg, and 19,616 U/mg for the nonpurified and purified proteins, respectively. Deglycosylation by using tunicamycin in culture medium resulted in higher fibrinolytic activity of SAK-2RGD-TTI (2.2 fold). Consequently, compared to the rSAK, at the same equimolar proportion, addition of RGD and TTI fragments could increase fibrinolytic activity. Also, P. pastoris can be considered as an efficient host for overexpression of the soluble SAK-2RGD-TTI with high activity without requiring a complicated purification procedure.  相似文献   
6.
Coagulation factor VIIa (FVIIa) belongs to a family of proteases being part of the stepwise, self-amplifying blood coagulation cascade. To investigate the impact of the mutation Met(298{156})Lys in FVIIa, we replaced the Gly(283{140})-Met(298{156}) loop with the corresponding loop of factor Xa. The resulting variant exhibited increased intrinsic activity, concurrent with maturation of the active site, a less accessible N-terminus, and, interestingly, an altered macromolecular substrate specificity reflected in an increased ability to cleave factor IX (FIX) and a decreased rate of FX activation compared to that of wild-type FVIIa. In complex with tissue factor, activation of FIX, but not of FX, returned to normal. Deconvolution of the loop graft in order to identify important side chain substitutions resulted in the mutant Val(158{21})Asp/Leu(287{144})Thr/Ala(294{152})Ser/Glu(296{154}) Ile/Met(298{156})Lys-FVIIa with almost the same activity and specificity profile. We conclude that a lysine residue in position 298{156} of FVIIa requires a hydrophilic environment to be fully accommodated. This position appears critical for substrate specificity among the proteases of the blood coagulation cascade due to its prominent position in the macromolecular exosite and possibly via its interaction with the corresponding position in the substrate (i.e. FIX or FX).  相似文献   
7.
Chen J  Duncan MB  Carrick K  Pope RM  Liu J 《Glycobiology》2003,13(11):785-794
Heparan sulfate 3-O-sulfotransferase transfers sulfate to the 3-OH position of a glucosamine to generate 3-O-sulfated heparan sulfate (HS), which is a rare component in HS from natural sources. We previously reported that 3-O- sulfotransferase isoform 5 (3-OST-5) generates both an antithrombin-binding site to exhibit anticoagulant activity and a binding site for herpes simplex virus 1 glycoprotein D to serve as an entry receptor for herpes simplex virus. In this study, we characterize the substrate specificity of 3-OST-5 using the purified enzyme. The enzyme was expressed in insect cells using the baculovirus expression approach and was purified by using heparin-Sepharose and 3',5'-ADP- agarose chromatographies. As expected, the purified enzyme generates both an antithrombin binding site and a glycoprotein D binding site. We isolated IdoUA-AnMan3S and IdoUA-AnMan3S6S from nitrous acid-degraded 3-OST-5-modified HS (pH 1.5), suggesting that 3-OST-5 enzyme sulfates the glucosamine residue that is linked to an iduronic acid residue at the nonreducing end. We also isolated a disaccharide with a structure of DeltaUA2S-GlcNS3S and a tetrasaccharide with a structure of DeltaUA2S-GlcNS-IdoUA2S-GlcNH23S6S from heparin lyases-digested 3-OST-5-modified HS. Our results suggest that 3-OST-5 enzyme sulfates both N-sulfated glucosamine and N-unsubstituted glucosamine residues. Taken together, the results indicate that 3-OST-5 has broader substrate specificity than those of 3-OST-1 and 3-OST-3. The unique substrate specificity of 3-OST-5 serves as an additional tool to study the mechanism for the biosynthesis of biologically active HS.  相似文献   
8.
A pentasaccharide (PS) fragment of heparin capable of activating antithrombin (AT) markedly accelerates the inhibition of factor Xa by AT, but has insignificant effect on inhibition of thrombin. For inhibition of thrombin, the bridging function of a longer polysaccharide chain is required to accelerate the reaction. To study the basis for the similar reactivity of thrombin with the native or heparin-activated conformers of AT, several residues surrounding the active site pocket of thrombin were targeted for mutagenesis study. Leu99 and Glu192, the variant residues influencing the S2 and S3 subsite specificity of thrombin were replaced with Tyr and Gln. The Tyr60a, Pro60b, Pro60c, and Trp60d residues forming part of the S2 specificity pocket were deleted from the B-insertion loop of the wild-type and Leu99/Glu192 --> Tyr/Gln thrombins. Kinetic studies indicated that the reactivities of all mutants with AT were moderately or severely impaired. Although heparin largely corrected the defect in reactivities, it also markedly elevated the stoichiometries of inhibition with the mutants. Interestingly, PS also accelerated AT inhibition of the mutants 5-68-fold, suggesting that the mutants are able to discriminate between the native and activated conformers of AT. Based on these results and the recent crystal structure determination of AT in complex with PS, a model for thrombin-AT interaction is proposed in which the S2 and S3 subsite residues of thrombin are critical for recognition of the P2 and P3 residues of AT in the native conformation. In the activated conformation, other residues are made accessible for interaction with the protease, and the similar reactivity of thrombin with the native and heparin-activated conformers of AT may be coincidental. The results further suggest that the S2 and S3 subsite residues are crucial in controlling the partitioning of the thrombin-AT intermediate into the alternative inhibitory or substrate pathways of the reaction.  相似文献   
9.
香蕉一个Ⅲ类酸性几丁质酶基因与果实成熟关系的研究   总被引:2,自引:0,他引:2  
为了解Ⅲ类酸性几丁质酶基因(MaCHⅢ)与香蕉果实采后成熟过程的相互关系,对经乙烯和1-甲基环丙烯(1-MCP)处理的巴西香蕉果实采后乙烯释放量、Ⅲ类酸性几丁质酶基因(MaCHⅢ)表达以及几丁质酶活性进行了测定.结果显示:(1)乙烯催熟处理的香蕉果实,乙烯释放量比对照处理的果实提前15 d达到高峰;1-MCP处理的香蕉果实,乙烯生物合成和果实成熟明显受到了抑制.(2)外源乙烯加速了MaCHⅢ基因的下调表达和Ⅲ类酸性几丁质酶活性的下降,MaCHⅢ表达量和Ⅲ类酸性几丁质酶活性分别在采后第3天和第4天下降到最小值.(3)1-MCP处理使MaCHⅢ基因呈现上调表达,Ⅲ类酸性几丁质酶活性上升,MaCHⅢ基因表达量和Ⅲ类酸性几丁质酶活性分别在采后18 d和25 d达到高峰.研究表明,MaCHⅢ基因可能与香蕉果实采后成熟呈负相关.  相似文献   
10.
The analysis of sequence conservation is commonly used to predict functionally important sites in proteins. We have developed an approach that first identifies highly conserved sites in a set of orthologous sequences using a weighted substitution‐matrix‐based conservation score and then filters these conserved sites based on the pattern of conservation present in a wider alignment of sequences from the same family and structural information to identify surface‐exposed sites. This allows us to detect specific functional sites in the target protein and exclude regions that are likely to be generally important for the structure or function of the wider protein family. We applied our method to two members of the serpin family of serine protease inhibitors. We first confirmed that our method successfully detected the known heparin binding site in antithrombin while excluding residues known to be generally important in the serpin family. We next applied our sequence analysis approach to neuroserpin and used our results to guide site‐directed polyalanine mutagenesis experiments. The majority of the mutant neuroserpin proteins were found to fold correctly and could still form inhibitory complexes with tissue plasminogen activator (tPA). Kinetic analysis of tPA inhibition, however, revealed altered inhibitory kinetics in several of the mutant proteins, with some mutants showing decreased association with tPA and others showing more rapid dissociation of the covalent complex. Altogether, these results confirm that our sequence analysis approach is a useful tool that can be used to guide mutagenesis experiments for the detection of specific functional sites in proteins. Proteins 2015; 83:135–152. © 2014 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号